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Abstract 
Hevelius, a web-based computer mouse test, measures arm move-
ment and has been shown to accurately evaluate severity for pa-
tients with Parkinson’s disease and ataxias. A Hevelius session 
produces 32 numeric features, which may be hard to interpret, es-
pecially in time-constrained clinical settings. This work aims to 
support clinicians (and other stakeholders) in interpreting and con-
necting Hevelius features to clinical concepts. Through an iterative 
design process, we developed a visualization tool (Hevelius Report) 
that (1) abstracts six clinically relevant concepts from 32 features, 
(2) visualizes patient test results, and compares them to results from 
healthy controls and other patients, and (3) is an interactive app 
to meet the specific needs in different usage scenarios. Then, we 
conducted a preliminary user study through an online interview 
with three clinicians who were not involved in the project. They 
expressed interest in using Hevelius Report, especially for identi-
fying subtle changes in their patients’ mobility that are hard to 
capture with existing clinical tests. Future work will integrate the 
visualization tool into the current clinical workflow of a neurology 
team and conduct systematic evaluations of the tool’s usefulness, 
usability, and effectiveness. Hevelius Report represents a promis-
ing solution for analyzing fine-motor test results and monitoring 
patients’ conditions and progressions. 

CCS Concepts 
• Human-centered computing → Interactive systems and 
tools; Visualization systems and tools. 

Keywords 
Digital phenotyping; Clinical decision-making; Mobility impair-
ment; Parkinson’s disease; Ataxia 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0677-6/24/10 
https://doi.org/10.1145/3663548.3688490 

ACM Reference Format: 
Hongjin Lin, Tessa Han, Krzysztof Z. Gajos, and Anoopum S. Gupta. 2024. 
Hevelius Report: Visualizing Web-Based Mobility Test Data For Clinical 
Decision and Learning Support. In The 26th International ACM SIGACCESS 
Conference on Computers and Accessibility (ASSETS ’24), October 27–30, 2024, 
St. John’s, NL, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/ 
10.1145/3663548.3688490 

1 Introduction 
About one out of ten people in the U.S. experiences some form of 
mobility impairment [15], ranging from difficulties with gross mo-
tor skills (e.g., walking) to fine motor skills (e.g., picking up an object 
by hand). Clinical support, medical research, and treatment design 
for patients with mobility impairments rely on accurate assess-
ments of motor ability. These assessments usually entail infrequent 
clinician-performed evaluations in a clinic setting. However, moni-
toring progression calls for more timely, frequent, and convenient 
assessments. Hevelius [10], a web-based computer mouse test, was 
developed to quantify dominant arm mobility. It has been shown to 
accurately measure disease severity for patients with Parkinson’s 
disease and ataxias [10, 22]. A Hevelius session spans only a few 
minutes and can be conducted at home [7, 22]. Participants are 
asked to perform up to 8 sets of 9 pointing movements using a 
computer mouse. At the end of each session, Hevelius produces 32 
features related to mouse movement profiles. 

To integrate Hevelius into clinicians’ existing workflow for decision-
making and research, we aim to reduce the cognitive burden re-
quired to interpret the movement data as much as possible. Taken 
together, our work makes the following contributions. 

First, working closely with a practicing clinician-engineer, we 
speculated three specific obstacles clinicians may face when inter-
preting Hevelius results and three potential usage scenarios. The 
three main obstacles are: 1) connecting the 32 fine-grained features 
to interpretable and clinically relevant concepts, 2) visualizing the 
features in digestible graphical forms, and 3) accessing and explor-
ing the data in different user scenarios quickly and conveniently. 
The three main usage scenarios are: 1) reviewing a patient’s data a 
few minutes before a clinical appointment, 2) discussing the visual-
izations with patients during the appointment (a typical clinic visit 
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(a) Summary plots (b) Trajectory plots (c) Speed plots (d) Additional 
information 

Figure 1: Interactive visualization tool (Hevelius Report) developed to help users analyze mobility test results. After the user 
enters a patient’s unique code, the tool provides a report of the patient’s test results with (a) summary plots, (b) trajectory 
plots, (c) speed plots, and (d) additional information on the analyses. The interface is a single continuous page with a sidebar 
that allows users to jump to a particular section. The red asterisks (annotations in the figure; not present in the tool) indicate 
opportunities for user interactions. 

lasts 30–60 minutes), and 3) taking time to learn about the patient’s 
data more deeply after the appointment. 

Second, to address each of these obstacles and support the three 
scenarios, we developed a secure web-based visualization platform 
Hevelius Report (Figure 1) that (1) extracts six clinically relevant 
concepts from 32 features with factor analysis, (2) visualizes var-
ious aspects of test results (concepts, raw movement trajectories, 
and speed profile) using the “small multiple” concept from data 
visualization [31], enabling comparisons to results from healthy 
controls, other patients, and the patient themself over time, and (3) 
is interactive to meet specific needs in different user scenarios. 

Third, we conducted one-hour semi-structured interviews with 
three additional clinicians not involved in the project to obtain 
preliminary user feedback on the platform. They affirmed the spec-
ulated obstacles and usage scenarios, expressing interest in learning 
about Hevelius and using the Hevelius Report. The combination of 
raw movement trajectories presented in the “small multiple” format 
and summary plots could effectively assist clinicians in identifying 
subtle changes not apparent in existing clinical tests. 

Our iterative design process, visualization techniques, and find-
ings on clinicians’ needs and perspectives could be generalized 
to other fine-motor test results for clinical decision-support. In 
future work, we plan to integrate the visualization tool into the cur-
rent clinical workflow of a neurology team and conduct systematic 
evaluations of the tool’s usefulness, usability, and effectiveness. 

2 Related Work 
Mobility test visualizations vary based on the motor impairments 
and clinical environments. We focused our literature review on 

Parkinson’s disease, which comes with some of the most common 
mobility problems like rigidity, slowness, and tremor [4]. 

Jusufi et al. [17] visualized spiral drawing data of Parkinson pa-
tients collected using a telemetry touch screen device. The authors 
showed the raw spiral trajectory data alongside two time-series 
graphs showing drawing speed and deviation from the desired tra-
jectory, suggesting a (manual) effort to reduce the raw trajectory 
data to two concepts: speed and position. Hixson et al. [14] de-
signed a data visualization platform to represent the Movement 
Disorder Society Unified Parkinson’s Disease Rating Scale Results 
(MDS-UPDRS). The authors displayed the MDS-UPDRS scores on 
human anatomical locations, which made it straightforward for 
clinicians to identify areas of the patient’s body that need more 
treatment attention. 

Prior works have also visualized the 3D movement of Parkin-
son’s patients. For example, Piro et al. [23] visualized 3D motion 
data using a computer vision approach to animate patients’ move-
ments while they completed a hand movement task in a clinical 
setting. Synnott et al. [28] visualized 3D trajectory data of patients 
completing daily activities like raising a cup. Jombík et al. [16] dis-
played tremor planes in 3D to find spatial features that distinguish 
tremors from Parkinson’s patients from healthy volunteers. 

Our work extends existing visualization efforts by providing 
data-driven (instead of manual) concept extraction of a web-based 
mobility test without requiring a specialized physical device. While 
our work is based on Hevelius, our findings and visualizations are 
generalizable to other tests that track fine motor movement trajec-
tories. 
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3 HCI design frameworks and collaboration 
Our team comprises Human-Computer Interaction (HCI) scholars 
and a practicing neurologist-engineer, who is motivated to integrate 
Hevelius into his clinical workflow. We held weekly meetings to 
discuss clinician needs, clinical workflows, and prototype feedback. 
We speculated the specific obstacles that clinicians may face when 
interpreting Hevelius results: 

• Obstacle 1. Clinicians may struggle to connect the 32 
fine-grained features to clinical concepts. Example fea-
tures include movement offset, movement variability [19], 
and normalized jerk [5] (see [22] and Appendix C for the full 
list). These features are too detailed and are not directly re-
lated to clinical aspects of movement disorders. This problem 
is exacerbated by time constraints. 

• Obstacle 2. Clinicians may find interpreting Hevelius 
test results in their current numerical form difficult. 
Clinicians may want to visualize these numerical values in 
graphical forms. 

• Obstacle 3. Clinicians may find it difficult to access 
and explore the data conveniently and quickly. The raw 
Hevelius data is currently stored in CSV files. Clinicians may 
want to obtain the results more conveniently (i.e., without 
coding) and more quickly (i.e., without performing each 
analysis step themselves). 

We also identified three main usage scenarios. First, clinicians 
may review patients’ data a few minutes before a clinical appoint-
ment, allowing them to grasp high-level information about their 
patients’ arm mobility. Second, clinicians may discuss the visual-
ization report with patients during the appointment (a typical clinic 
visit lasts 30-60 minutes). Lastly, they may take more time to digest 
the report after the appointment. These different usage scenarios 
motivate flexibility and interactivity to address distinct needs from 
different scenarios. 

Furthermore, we co-determined the design values and revis-
ited them throughout the process, following the Value Sensitive 
Design framework [8, 11]. They were 1) convey useful information 
from Hevelius for diagnosis, severity measurement, and progression 
tracking, 2) facilitate learning for clinicians (and patients) about 
disease progression and treatment, and 3) be mindful about how 
certain visualizations might make patients feel discouraged and 
confused. While we focus on clinicians’ needs in this work, an on-
going study from our team seeks patients’ perspectives to update 
this set of values (and our work) to better serve the patients as key 
stakeholders [27]. 

Lastly, we presented multiple designs to solicit informal feedback 
in our weekly meetings with our clinician-engineer collaborator, 
following a Parallel Design principle [6, 30]. 

4 Data 
We used two data sources in this work. One dataset was collected 
from 247,667 healthy control participants in a web-based study 
hosted on LabintheWild [24] in 2013. We used this dataset for factor 
analysis to extract clinically relevant concepts. Another dataset was 
collected from 286 participants from a clinical study (2016–2020) 
conducted by the clinician in our team, with 124 of the participants 
diagnosed with ataxias, 61 diagnosed with Parkinson’s, 59 of them 

serving as healthy controls, and the rest with other diagnoses. About 
70 (24%) participants completed more than one session. We used 
this dataset to develop visualizations for individual patients. Both 
datasets were anonymized before the authors could access them. 

5 Factor Analysis and Data Visualizations 
We describe three aspects of the visualization tool, each addressing 
an obstacle described in Section 3. We further describe other solu-
tions explored and explain why the chosen solution is optimal in 
Appendix B. 

First, the visualization tool extracts high-level, clinically 
relevant concepts. Addressing the obstacle of interpreting fine-
grained features (Obstacle 1), we performed factor analysis [29] 
on 32 Hevelius features and obtained six higher-level concepts, 
using the factor_analyzer Python package [1]. We implemented the 
promax rotation (an oblique rotation method) to allow the factors 
to be correlated since many clinical concepts, such as speed and 
accuracy of movement trajectories, are correlated [33]. 

Figure 2 (Appendix A) represents the loading between each fac-
tor and Hevelius feature. Features with the highest loading values 
for a factor are the most salient for interpreting the factor. For ex-
ample, the variables that are most strongly associated with Factor 
1 are the maximum deviation from the task axis, movement errors, 
movement offset, and movement variability. This list of variables 
led us to infer that Factor 1 is related to deviation from a straight 
line. We mapped each factor to a concept relevant to aspects of 
movement that clinicians are likely to assess when examining pa-
tients’ motor skills. The resulting six concepts are 1) deviation from 
the straight line, 2) directional change from the target, 3) pauses and 
jerks, 4) speed, 5) time inconsistency, and 6) speed inconsistency. 
Two categories emerged from the six concepts: the first two are 
related to the computer mouse trajectory, while the latter four are 
related to time and speed. We are conducting additional analysis to 
investigate the statistical relationship between these six concepts 
and clinical scores like the Brief Ataxia Rating Scale (BARS) [25] and 
Patient-Reported Outcome Measure of Ataxia (PROM-Ataxia) [26]. 

Second, we visualized various aspects of Hevelius test re-
sults (concepts, trajectory profile, and speed profile), address-
ing the obstacle of interpreting the data in its current numerical 
form (Obstacle 2). First, we created visualizations to summarize 
information about each of the six concepts (“summary plots”). 
An example summary plot for the “deviation from the straight line” 
concept is shown in Figure 3 (Appendix A). We overlaid the pa-
tient’s value over the distributions of comparable healthy controls 
(i.e., same gender and age group) and comparable patients (i.e., same 
diagnoses, gender, and age group) (Figure 3, left). We also plotted 
the patient’s values and those of comparable patients over time 
(Figure 3, right). These visualizations enable clinicians to compare 
the patient to healthy controls and other patients and track the 
patient’s progression. 

Next, we visualized how the patient moved the computer mouse 
to the target (“trajectory plots”), using the “small multiple” con-
cept from data visualization [31]. An example trajectory plot is 
shown in Figure 4 (Appendix A). For a given concept, we identified 
the 5𝑡ℎ, 50𝑡ℎ, and 95𝑡ℎ percentile of trials of the patient (in blue) 
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and the healthy control population (in grey). We plotted these tra-
jectories in three rows (one row for each of the three percentiles). 
Each column represents one Hevelius session. This visualization 
enables one to compare the mouse trajectories of the patient and 
those of healthy controls, see the variation in trajectories across 
trials at a given time point (best, median, and worst), and see how 
trajectories change over time. 

Furthermore, we visualized the mouse movement speed profile 
during each trajectory (“speed plots”). An example speed plot 
is shown in Figure 5 (Appendix A). The speed plot shows three 
phases of the task: initiation (between the start of the trial and the 
start of mouse movement), execution (between when the patient 
first moves the mouse and before the patient clicks the mouse), 
and click duration (the start of the click to the end of the click, i.e., 
from mouse down to mouse up). This visualization enables one 
to compare the computer mouse speed of the patient and healthy 
controls, see the variation in speed across trials at a given time 
point (5𝑡ℎ, 50𝑡ℎ, and 95𝑡ℎ percentile trials), and see how movement 
speed changes over time. 

Through representing contrasts [20], the visualizations can pro-
vide insights into a patient’s mobility condition and progression 
compared to other populations. For example, patients with Parkin-
son’s might move the mouse more slowly but follow a straight line. 
In contrast, healthy control participants might move quickly but 
deviate from the straight line more drastically. Healthy controls 
might also start the task much sooner than patients in the initia-
tion phase, which connects with the clinical concept of movement 
initiation. 

Third, the visualization tool is interactive. Upon developing 
a design prototype (Appendix E, Figure 10), we built an interactive 
app—Hevelius Report—using Streamlit.io [3] to address the clini-
cians’ need to conveniently explore Hevelius results (Obstacle 3). 
When using the visualization tool, users are first asked to enter 
the unique code of a patient. Then, users are presented with basic 
patient information (diagnosis, age, gender) (Figure 1a), summary 
plots (with the option to view different dates) (Figure 1a), trajectory 
plots (Figure 1b), speed plots (Figure 1c), and additional informa-
tion about the analyses (specific factor analysis results) (Figure 1d). 
Users can select a subset of concepts and set the number of health 
control comparisons (in grey) as they scroll through the report. 

6 Preliminary user study 
Recruitment and Analysis. To elicit early feedback on the use-
fulness and usability of our visualization platform, we conducted 
a one-hour semi-structured group interview with three clinicians 
who treat patients with movement disorders, including Parkinson’s 
disease. None of them were involved in the project or had prior 
knowledge of the system. We recruited the clinicians through per-
sonal connections. Since clinicians are highly specialized experts 
with many time constraints, we minimized the number of schedul-
ing emails and agreed to meet at a time that worked for all three 
of them. We did not record the meeting nor collect any personal 
information. We only reported high-level findings without using 
any quotes in this paper. 

Results. Overall, the clinicians affirmed the speculated obstacles 
and usage scenarios, expressing interest in using this visualization 

tool. The combination of raw movement trajectories and summary 
plots allowed them to identify subtle changes not available in ex-
isting clinical tests. The clinicians confirmed that the high-level 
concepts extracted using factor analysis were clinically relevant. 
The clinicians indicated that those concepts are aspects of move-
ment they examine when assessing a patient’s motor skills. They 
also expressed interest in further analysis of the statistical associa-
tions between the factors and established clinical measures. 

When it comes to the visualizations, clinicians held diverging 
preferences, highlighting the importance of interactivity. For ex-
ample, regarding the ordering of data visualizations, two clinicians 
preferred seeing summary plots before diving into the details; one 
clinician preferred seeing trajectory plots first to do most of the 
synthesis himself before seeing the summary plots. This indicates 
different preferences for cognitive engagement [9]. Designing to 
meet human experts’ diverse needs in clinical tasks is crucial for 
reducing over-reliance on automation and the resulting high-stake 
erroneous decisions [12]. 

7 Limitations and Future Work 
One limitation of our current work is the relatively small number of 
end users involved. Future work will seek perspectives from more 
clinicians, as well as other key stakeholders like patients (e.g., to un-
derstand how they might want to see and use their own data [27]). 
Future work also includes integrating Hevelius Report into an ex-
amination program Neurobooth [2] that uses comprehensive digital 
tests, including Hevelius, to examine a patient’s motor skills, eye 
movements, speech, and cognition. In the meantime, we will seek 
additional user perspectives on user scenarios and obstacles. Upon 
further improvement, we will formally evaluate the tool and its 
impact on clinical decision-making by conducting systemic evalu-
ations with clinicians and other end users–with usability testing 
like the system usability scale (SUS) questionnaire and controlled 
studies. 

Another limitation is the small number of longitudinal data to 
visualize patients’ progression of mobility over time. We believe 
that ongoing data collection efforts will enable better usage of the 
progression plot. We also emphasize the importance of recruiting a 
demographically and socio-economically diverse group of patients 
and healthy control participants to mitigate downstream bias [18]. 
A diverse and accurate data presentation of patients will improve 
the population estimates of Hevelius outcomes and facilitate more 
equitable clinical research and treatment. 
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A Figures of visualization 

Figure 2: Factor analysis results. We performed factor analy-
sis on the Hevelius test results from 247,667 healthy control 
participants and reduced the 32 Hevelius features to 6 factors. 
The coefficients representing the relationship between each 
factor and the features are displayed above. We mapped the 
6 factors to 6 concepts: 1) deviation from straight line, 2) di-
rectional change from target, 3) pauses and jerks, 4) speed, 
5) time inconsistency, and 6) speed inconsistency (Factors 
1-6, respectively). Discussions with clinicians indicated that 
these concepts are clinically relevant. 

Figure 3: Example summary plot for a Parkinson’s patient 
for a given timepoint and concept. The plot on the left com-
pares the patient’s result with that of the relevant patient 
and healthy control sub-populations. The plot on the right 
shows the progression of the patient’s condition over time 
and compares the patient’s progression with that of other 
patients. 

Figure 4: Example trajectory plots for a Parkinson’s patient. 
The plot compares the mouse trajectory of the patient (blue) 
to example trajectories from healthy controls (gray) over 
two Hevelius sessions (two columns). Users can choose to 
see one average healthy control trajectory or a distribution 
of up to 20 trajectories. The 5𝑡ℎ, 50𝑡ℎ, and 95𝑡ℎ percentile 
trajectories are selected based on a concept (in this example, 
the "deviation from straight line" concept). 
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Figure 5: Example time-speed plots for a Parkinson’s patient 
over two Hevelius sessions. The plot shows the speed of the 
mouse during the corresponding trajectories in the trajectory 
plot (Figure 4). Users can choose to see one average healthy 
control speed line (gray) or a distribution of up to 20 speed 
lines. The initiation phase (time between the start of the task 
and the start of mouse movement) is highlighted in the light 
blue shaded area. 
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B Other solutions explored 

B.1 Concept Learning 
In addition to factor analysis, we also explored other methods to per-
form dimensionality reduction, including k-means clustering [13], 
t-SNE [32], and hierarchical clustering [21]. However, these meth-
ods had the following shortcomings. Although k-means clustering 
and t-SNE can reduce a large number of features into a smaller 
number of clusters, the relationship among features in each cluster 
and, thus, the meaning of each cluster is difficult to interpret. For 
hierarchical clustering, although the resulting dendrogram depicts 
how features are related to each other in terms of distance in space, 
it is unclear how to summarize a given cluster of features mathemat-
ically. For details, please see Figure 6. Because factor analysis not 
only clearly indicates the relationship between each factor and the 
features but also provides a way to mathematically summarize the 
features (i.e., each factor is a linear combination of the features), we 
chose to use factor analysis for the study. When performing factor 
analysis, we explored the possibility of reducing the 32 features 
to 4, 5, 6, and 7 factors. We ultimately selected 6 factors because 
they provided a good balance between a small number of factors 
explaining a large proportion of variance in the data. 

Figure 6: Hierarchical clustering. In addition to factor anal-
ysis, we also explored hierarchical clustering as another 
method to reduce the dimensionality of the Hevelius features. 
The dendrogram from the hierarchical clustering analysis is 
displayed above. Although hierarchical clustering shows how 
features are related to each other in terms of distance in space, 
it is unclear how to summarize a given cluster of features 
mathematically. Thus, we did not end up using hierarchical 
clustering to reduce the dimensionality of the features. 

We also conducted factor analysis on patient subgroups instead 
of healthy control populations to understand how the concept 
groups differ. We found a high level of overlap among these results 
and decided to use the concept groups based on the healthy control 
populations due to their generalizability across different patient 
groups. 

B.2 Visualization 
During the design of Hevelius visualizations, one key question 
that came up repeatedly was how to show the distributions of 
the healthy control subpopulation and the patient subpopulation. 
For the summary plots, we obtained the distribution of values, 
performed kernel density estimation to obtain a smooth curve, and 
plotted this curve to represent the distribution. For the trajectory 
and speed plots, based on discussions with our clinician collaborator, 
we initially plotted three trajectories from the specified quantiles 
from healthy control participants to provide some information 
about the distribution of trajectories. However, discussions with 
other clinicians revealed that some prefer seeing a single average 
trajectory from the healthy control population instead. To account 
for these different preferences, we designed the app to allow users 
to specify the number of trajectories they want to see. For examples 
of different prototypes during the development of the visualizations, 
please see Appendix D (Figures 7, 8, and 9). 

Another point of discussion was whether to normalize data 
points to facilitate the comparison of patients’ progression in the 
summary plots (Figure 3, right). In the plot, normalizing each pa-
tient’s data with respect to results from each patient’s first Hevelius 
session would allow all the lines to start at the same starting point 
and would allow for a clearer comparison of how each patient has 
progressed since their first Hevelius session. However, the unnor-
malized data shows large variability in the patients’ starting points. 
This information would be lost upon normalization and may mis-
guide the interpretation of the data, misleading one to believe that 
patients are more similar than they actually are. Given these con-
cerns with normalized data, we opted to visualize the unnormalized 
data. 

B.3 Visualization Platform 
In addition to Streamlit.io, we also considered building the user 
interface using R Shiny and via our own website. Building our 
own website would allow for great flexibility, but would also entail 
unnecessary additional work of building various website structures 
from scratch. In contrast, Streamlit.io and R Shiny are packages 
that offer support in building interactive web apps, so we opted for 
the latter two. We chose Streamlit.io over R Shiny to build the user 
interface because Streamlit.io integrates seamlessly with Python 
(the coding language used to create the data visualizations). 

During the design process, we discussed the interface options, 
such as having different pages for each data visualization or a 
continuous scroll. Based on discussions with our collaborators, 
we opted for a continuous scroll so that users could see multiple 
visualizations simultaneously (if they choose to) and added a sidebar 
menu to jump to different sections quickly. 

https://Streamlit.io
https://Streamlit.io
https://Streamlit.io
https://Streamlit.io
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C List of features in Hevelius test results 
The Hevelius test results include 3 features related to patient and 
session identification and 32 features related to mouse movement. 
The 3 features related to patient and session identification are 1) 
patient ID, 2) diagnosis, and 3) patient-session ID. The 32 features 
related to mouse movement are: 

(1) Standard deviation (computed over all trials in a block) of 
the distance from the target center at the end of the first 
submovement divided by the mean of peak accelerations 

(2) Peak acceleration: maximum smoothed acceleration recorded 
during a movement 

(3) Peak speed: the maximum smoothed speed recorded during 
a movement 

(4) Click duration variability: standard deviation of click dura-
tions in a block of trials 

(5) Verification time variability: standard deviation of verifica-
tion times in a block of trials 

(6) Movement time variability: coefficient of variation of move-
ment times in a block of trials 

(7) Execution time variability: coefficient of variation of execu-
tion times in a block of trials 

(8) Execution time variability without pauses: coefficient of vari-
ation of execution times without pauses in a block of trials 

(9) Movement time: complete movement time from target onset 
to the end of the successful click on the target 

(10) Peak acceleration: maximum smoothed acceleration recorded 
during a movement 

(11) Click duration: time between mouse button press and release 
during the correct click on the target 

(12) Click slip: distance between the point where the mouse but-
ton was pressed down and where it was released during click 
on the target 

(13) Distance from target center at the end of main submovement: 
2D distance from the mouse pointer location at the end of 
the main submovement to the target center 

(14) Execution time: time from the first to the last mouse move-
ment, excluding any movement that occurred while the 
mouse button was pressed 

(15) Execution time without pauses: like execution time, but ex-
cludes pauses of 100ms or longer 

(16) Fraction of remaining distance to the target center covered 
in main submovement: fraction of the remaining distance 
along the task axis covered during the main submovement 

(17) Fraction of the main submovement spent accelerating: frac-
tion of the time from the start of the submovement to the 
time when acceleration reached its peak value divided by 
the overall duration of the submovement 

(18) Main submovement: submovement with the highest peak 
speed 

(19) Maximum deviation from task axis: maximum distance of 
the mouse pointer from the task axis during a movement 

(20) Movement direction changes: number of times the move-
ment component orthogonal (vertical) to the task axis changes 
sign 

(21) Movement error: average absolute distance of the mouse 
pointer from the task axis 

(22) Movement offset: average (non-absolute) distance of the 
mouse pointer from the task axis 

(23) Movement variability: standard deviation of the distance of 
the actual path from the task axis 

(24) Normalized jerk: dimensionless measure computed as nor-
malized jerk based on Pandey et al. [22] 

(25) Normalized jerk without pauses: like normalized jerk, but 
excludes parts of the movement when the mouse pointer 
was paused for 100ms or longer 

(26) Number of pauses: number of pauses of 100ms or longer 
(27) Duration of the longest pause: duration of the longest pause 

of 100ms or longer 
(28) Orthogonal direction changes: number of times the move-

ment component parallel to the task axis changes sign 
(29) Peak speed: maximum smoothed speed recorded during a 

movement 
(30) Task axis crossings: number of times the mouse pointer 

crossed the task axis during the movement 
(31) Verification time: time interval between the end of a move-

ment inside a target and the beginning of the click (i.e., the 
time when the mouse button was pressed) 

(32) Target re-entries: number of times the mouse pointer leaves 
the target and then re-enters it before the start of the click 
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D Development of data visualizations 

(a) Earlier version 

(b) Latest version 

Figure 7: Development of summary plots, from (a) an earlier 
version to (b) the latest version (same as Figure 3 in main 
paper). In the latest version, we adjusted the color scheme 
for consistency with trajectory and speed plots, added a star 
indicating the visualized timepoint in the progression plot, 
statistically tested the difference between the patient popu-
lation and control population, and noted the patient’s per-
centile with respect to the patient population and healthy 
control population. 

(a) Design sketch 

(b) Earlier version 

(c) Latest version 

Figure 8: Development of trajectory plots, from (a) a design 
sketch to (b) an earlier version to (c) the latest version (same 
as Figure 8 in main paper). After sketching potential designs, 
we chose the design shown in (a) and implemented it in (b). In 
contrast to the earlier version (b), which visualizes the best, 
median, and worst trajectories, shows the average healthy 
control trajectory in gray, and uses a red-green color scheme, 
the latest version (c) visualizes the 5𝑡ℎ, 50𝑡ℎ, and 95𝑡ℎ per-
centile trajectories, can show a single average or up to 20 
healthy control trajectories in gray (user decides), and uses an 
orange-blue color scheme consistent with the color scheme 
in the summary and speed plots. 
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(a) Earlier version (b) Latest version 

Figure 9: Development of speed plots, from (a) an earlier version to (b) the latest version (same as Figure 9. In the earlier version, 
users could only visualize the average speed line for a healthy control in gray. In the latest version, users can visualize a single 
average or up to 20 healthy control speed lines in gray. 



ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada Lin et al. 

E Development of user interface 

Figure 10: Design sketch for the user interface of the visual-
ization tool. Later, during the implementation, because the 
amount of information and visualizations was too much to 
display on one screen, we opted for a single-scroll continuous 
page with a sidebar that allows users to jump to a section of 
interest. 
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