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Abstract

Hevelius, a web-based computer mouse test, measures arm move-
ment and has been shown to accurately evaluate severity for pa-
tients with Parkinson’s disease and ataxias. A Hevelius session
produces 32 numeric features, which may be hard to interpret, es-
pecially in time-constrained clinical settings. This work aims to
support clinicians (and other stakeholders) in interpreting and con-
necting Hevelius features to clinical concepts. Through an iterative
design process, we developed a visualization tool (Hevelius Report)
that (1) abstracts six clinically relevant concepts from 32 features,
(2) visualizes patient test results, and compares them to results from
healthy controls and other patients, and (3) is an interactive app
to meet the specific needs in different usage scenarios. Then, we
conducted a preliminary user study through an online interview
with three clinicians who were not involved in the project. They
expressed interest in using Hevelius Report, especially for identi-
fying subtle changes in their patients’ mobility that are hard to
capture with existing clinical tests. Future work will integrate the
visualization tool into the current clinical workflow of a neurology
team and conduct systematic evaluations of the tool’s usefulness,
usability, and effectiveness. Hevelius Report represents a promis-
ing solution for analyzing fine-motor test results and monitoring
patients’ conditions and progressions.

CCS Concepts

« Human-centered computing — Interactive systems and
tools; Visualization systems and tools.
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1 Introduction

About one out of ten people in the U.S. experiences some form of
mobility impairment [15], ranging from difficulties with gross mo-
tor skills (e.g., walking) to fine motor skills (e.g., picking up an object
by hand). Clinical support, medical research, and treatment design
for patients with mobility impairments rely on accurate assess-
ments of motor ability. These assessments usually entail infrequent
clinician-performed evaluations in a clinic setting. However, moni-
toring progression calls for more timely, frequent, and convenient
assessments. Hevelius [10], a web-based computer mouse test, was
developed to quantify dominant arm mobility. It has been shown to
accurately measure disease severity for patients with Parkinson’s
disease and ataxias [10, 22]. A Hevelius session spans only a few
minutes and can be conducted at home [7, 22]. Participants are
asked to perform up to 8 sets of 9 pointing movements using a
computer mouse. At the end of each session, Hevelius produces 32
features related to mouse movement profiles.

To integrate Hevelius into clinicians’ existing workflow for decision-
making and research, we aim to reduce the cognitive burden re-
quired to interpret the movement data as much as possible. Taken
together, our work makes the following contributions.

First, working closely with a practicing clinician-engineer, we
speculated three specific obstacles clinicians may face when inter-
preting Hevelius results and three potential usage scenarios. The
three main obstacles are: 1) connecting the 32 fine-grained features
to interpretable and clinically relevant concepts, 2) visualizing the
features in digestible graphical forms, and 3) accessing and explor-
ing the data in different user scenarios quickly and conveniently.
The three main usage scenarios are: 1) reviewing a patient’s data a
few minutes before a clinical appointment, 2) discussing the visual-
izations with patients during the appointment (a typical clinic visit
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Figure 1: Interactive visualization tool (Hevelius Report) developed to help users analyze mobility test results. After the user
enters a patient’s unique code, the tool provides a report of the patient’s test results with (a) summary plots, (b) trajectory
plots, (c) speed plots, and (d) additional information on the analyses. The interface is a single continuous page with a sidebar
that allows users to jump to a particular section. The red asterisks (annotations in the figure; not present in the tool) indicate

opportunities for user interactions.

lasts 30-60 minutes), and 3) taking time to learn about the patient’s
data more deeply after the appointment.

Second, to address each of these obstacles and support the three
scenarios, we developed a secure web-based visualization platform
Hevelius Report (Figure 1) that (1) extracts six clinically relevant
concepts from 32 features with factor analysis, (2) visualizes var-
ious aspects of test results (concepts, raw movement trajectories,
and speed profile) using the “small multiple” concept from data
visualization [31], enabling comparisons to results from healthy
controls, other patients, and the patient themself over time, and (3)
is interactive to meet specific needs in different user scenarios.

Third, we conducted one-hour semi-structured interviews with
three additional clinicians not involved in the project to obtain
preliminary user feedback on the platform. They affirmed the spec-
ulated obstacles and usage scenarios, expressing interest in learning
about Hevelius and using the Hevelius Report. The combination of
raw movement trajectories presented in the “small multiple” format
and summary plots could effectively assist clinicians in identifying
subtle changes not apparent in existing clinical tests.

Our iterative design process, visualization techniques, and find-
ings on clinicians’ needs and perspectives could be generalized
to other fine-motor test results for clinical decision-support. In
future work, we plan to integrate the visualization tool into the cur-
rent clinical workflow of a neurology team and conduct systematic
evaluations of the tool’s usefulness, usability, and effectiveness.

2 Related Work

Mobility test visualizations vary based on the motor impairments
and clinical environments. We focused our literature review on

Parkinson’s disease, which comes with some of the most common
mobility problems like rigidity, slowness, and tremor [4].

Jusufi et al. [17] visualized spiral drawing data of Parkinson pa-
tients collected using a telemetry touch screen device. The authors
showed the raw spiral trajectory data alongside two time-series
graphs showing drawing speed and deviation from the desired tra-
jectory, suggesting a (manual) effort to reduce the raw trajectory
data to two concepts: speed and position. Hixson et al. [14] de-
signed a data visualization platform to represent the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale Results
(MDS-UPDRS). The authors displayed the MDS-UPDRS scores on
human anatomical locations, which made it straightforward for
clinicians to identify areas of the patient’s body that need more
treatment attention.

Prior works have also visualized the 3D movement of Parkin-
son’s patients. For example, Piro et al. [23] visualized 3D motion
data using a computer vision approach to animate patients’ move-
ments while they completed a hand movement task in a clinical
setting. Synnott et al. [28] visualized 3D trajectory data of patients
completing daily activities like raising a cup. Jombik et al. [16] dis-
played tremor planes in 3D to find spatial features that distinguish
tremors from Parkinson’s patients from healthy volunteers.

Our work extends existing visualization efforts by providing
data-driven (instead of manual) concept extraction of a web-based
mobility test without requiring a specialized physical device. While
our work is based on Hevelius, our findings and visualizations are
generalizable to other tests that track fine motor movement trajec-
tories.
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3 HCI design frameworks and collaboration

Our team comprises Human-Computer Interaction (HCI) scholars
and a practicing neurologist-engineer, who is motivated to integrate
Hevelius into his clinical workflow. We held weekly meetings to
discuss clinician needs, clinical workflows, and prototype feedback.
We speculated the specific obstacles that clinicians may face when
interpreting Hevelius results:

e Obstacle 1. Clinicians may struggle to connect the 32
fine-grained features to clinical concepts. Example fea-
tures include movement offset, movement variability [19],
and normalized jerk [5] (see [22] and Appendix C for the full
list). These features are too detailed and are not directly re-
lated to clinical aspects of movement disorders. This problem
is exacerbated by time constraints.

e Obstacle 2. Clinicians may find interpreting Hevelius
test results in their current numerical form difficult.
Clinicians may want to visualize these numerical values in
graphical forms.

e Obstacle 3. Clinicians may find it difficult to access
and explore the data conveniently and quickly. The raw
Hevelius data is currently stored in CSV files. Clinicians may
want to obtain the results more conveniently (i.e., without
coding) and more quickly (i.e., without performing each
analysis step themselves).

We also identified three main usage scenarios. First, clinicians
may review patients’ data a few minutes before a clinical appoint-
ment, allowing them to grasp high-level information about their
patients’ arm mobility. Second, clinicians may discuss the visual-
ization report with patients during the appointment (a typical clinic
visit lasts 30-60 minutes). Lastly, they may take more time to digest
the report after the appointment. These different usage scenarios
motivate flexibility and interactivity to address distinct needs from
different scenarios.

Furthermore, we co-determined the design values and revis-
ited them throughout the process, following the Value Sensitive
Design framework [8, 11]. They were 1) convey useful information
from Hevelius for diagnosis, severity measurement, and progression
tracking, 2) facilitate learning for clinicians (and patients) about
disease progression and treatment, and 3) be mindful about how
certain visualizations might make patients feel discouraged and
confused. While we focus on clinicians’ needs in this work, an on-
going study from our team seeks patients’ perspectives to update
this set of values (and our work) to better serve the patients as key
stakeholders [27].

Lastly, we presented multiple designs to solicit informal feedback
in our weekly meetings with our clinician-engineer collaborator,
following a Parallel Design principle [6, 30].

4 Data

We used two data sources in this work. One dataset was collected
from 247,667 healthy control participants in a web-based study
hosted on LabintheWild [24] in 2013. We used this dataset for factor
analysis to extract clinically relevant concepts. Another dataset was
collected from 286 participants from a clinical study (2016-2020)
conducted by the clinician in our team, with 124 of the participants
diagnosed with ataxias, 61 diagnosed with Parkinson’s, 59 of them
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serving as healthy controls, and the rest with other diagnoses. About
70 (24%) participants completed more than one session. We used
this dataset to develop visualizations for individual patients. Both
datasets were anonymized before the authors could access them.

5 Factor Analysis and Data Visualizations

We describe three aspects of the visualization tool, each addressing
an obstacle described in Section 3. We further describe other solu-
tions explored and explain why the chosen solution is optimal in
Appendix B.

First, the visualization tool extracts high-level, clinically
relevant concepts. Addressing the obstacle of interpreting fine-
grained features (Obstacle 1), we performed factor analysis [29]
on 32 Hevelius features and obtained six higher-level concepts,
using the factor_analyzer Python package [1]. We implemented the
promax rotation (an oblique rotation method) to allow the factors
to be correlated since many clinical concepts, such as speed and
accuracy of movement trajectories, are correlated [33].

Figure 2 (Appendix A) represents the loading between each fac-
tor and Hevelius feature. Features with the highest loading values
for a factor are the most salient for interpreting the factor. For ex-
ample, the variables that are most strongly associated with Factor
1 are the maximum deviation from the task axis, movement errors,
movement offset, and movement variability. This list of variables
led us to infer that Factor 1 is related to deviation from a straight
line. We mapped each factor to a concept relevant to aspects of
movement that clinicians are likely to assess when examining pa-
tients’ motor skills. The resulting six concepts are 1) deviation from
the straight line, 2) directional change from the target, 3) pauses and
jerks, 4) speed, 5) time inconsistency, and 6) speed inconsistency.
Two categories emerged from the six concepts: the first two are
related to the computer mouse trajectory, while the latter four are
related to time and speed. We are conducting additional analysis to
investigate the statistical relationship between these six concepts
and clinical scores like the Brief Ataxia Rating Scale (BARS) [25] and
Patient-Reported Outcome Measure of Ataxia (PROM-Ataxia) [26].

Second, we visualized various aspects of Hevelius test re-
sults (concepts, trajectory profile, and speed profile), address-
ing the obstacle of interpreting the data in its current numerical
form (Obstacle 2). First, we created visualizations to summarize
information about each of the six concepts (“summary plots”).
An example summary plot for the “deviation from the straight line”
concept is shown in Figure 3 (Appendix A). We overlaid the pa-
tient’s value over the distributions of comparable healthy controls
(i.e., same gender and age group) and comparable patients (i.e., same
diagnoses, gender, and age group) (Figure 3, left). We also plotted
the patient’s values and those of comparable patients over time
(Figure 3, right). These visualizations enable clinicians to compare
the patient to healthy controls and other patients and track the
patient’s progression.

Next, we visualized how the patient moved the computer mouse
to the target (“trajectory plots”), using the “small multiple” con-
cept from data visualization [31]. An example trajectory plot is
shown in Figure 4 (Appendix A). For a given concept, we identified
the 5th, 50th, and 95th percentile of trials of the patient (in blue)
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and the healthy control population (in grey). We plotted these tra-
jectories in three rows (one row for each of the three percentiles).
Each column represents one Hevelius session. This visualization
enables one to compare the mouse trajectories of the patient and
those of healthy controls, see the variation in trajectories across
trials at a given time point (best, median, and worst), and see how
trajectories change over time.

Furthermore, we visualized the mouse movement speed profile
during each trajectory (“speed plots”). An example speed plot
is shown in Figure 5 (Appendix A). The speed plot shows three
phases of the task: initiation (between the start of the trial and the
start of mouse movement), execution (between when the patient
first moves the mouse and before the patient clicks the mouse),
and click duration (the start of the click to the end of the click, i.e.,
from mouse down to mouse up). This visualization enables one
to compare the computer mouse speed of the patient and healthy
controls, see the variation in speed across trials at a given time
point (5th, 50th, and 95th percentile trials), and see how movement
speed changes over time.

Through representing contrasts [20], the visualizations can pro-
vide insights into a patient’s mobility condition and progression
compared to other populations. For example, patients with Parkin-
son’s might move the mouse more slowly but follow a straight line.
In contrast, healthy control participants might move quickly but
deviate from the straight line more drastically. Healthy controls
might also start the task much sooner than patients in the initia-
tion phase, which connects with the clinical concept of movement
initiation.

Third, the visualization tool is interactive. Upon developing
a design prototype (Appendix E, Figure 10), we built an interactive
app—Hevelius Report—using Streamlit.io [3] to address the clini-
cians’ need to conveniently explore Hevelius results (Obstacle 3).
When using the visualization tool, users are first asked to enter
the unique code of a patient. Then, users are presented with basic
patient information (diagnosis, age, gender) (Figure 1a), summary
plots (with the option to view different dates) (Figure 1a), trajectory
plots (Figure 1b), speed plots (Figure 1c), and additional informa-
tion about the analyses (specific factor analysis results) (Figure 1d).
Users can select a subset of concepts and set the number of health
control comparisons (in grey) as they scroll through the report.

6 Preliminary user study

Recruitment and Analysis. To elicit early feedback on the use-
fulness and usability of our visualization platform, we conducted
a one-hour semi-structured group interview with three clinicians
who treat patients with movement disorders, including Parkinson’s
disease. None of them were involved in the project or had prior
knowledge of the system. We recruited the clinicians through per-
sonal connections. Since clinicians are highly specialized experts
with many time constraints, we minimized the number of schedul-
ing emails and agreed to meet at a time that worked for all three
of them. We did not record the meeting nor collect any personal
information. We only reported high-level findings without using
any quotes in this paper.

Results. Overall, the clinicians affirmed the speculated obstacles
and usage scenarios, expressing interest in using this visualization
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tool. The combination of raw movement trajectories and summary
plots allowed them to identify subtle changes not available in ex-
isting clinical tests. The clinicians confirmed that the high-level
concepts extracted using factor analysis were clinically relevant.
The clinicians indicated that those concepts are aspects of move-
ment they examine when assessing a patient’s motor skills. They
also expressed interest in further analysis of the statistical associa-
tions between the factors and established clinical measures.

When it comes to the visualizations, clinicians held diverging
preferences, highlighting the importance of interactivity. For ex-
ample, regarding the ordering of data visualizations, two clinicians
preferred seeing summary plots before diving into the details; one
clinician preferred seeing trajectory plots first to do most of the
synthesis himself before seeing the summary plots. This indicates
different preferences for cognitive engagement [9]. Designing to
meet human experts’ diverse needs in clinical tasks is crucial for
reducing over-reliance on automation and the resulting high-stake
erroneous decisions [12].

7 Limitations and Future Work

One limitation of our current work is the relatively small number of
end users involved. Future work will seek perspectives from more
clinicians, as well as other key stakeholders like patients (e.g., to un-
derstand how they might want to see and use their own data [27]).
Future work also includes integrating Hevelius Report into an ex-
amination program Neurobooth [2] that uses comprehensive digital
tests, including Hevelius, to examine a patient’s motor skills, eye
movements, speech, and cognition. In the meantime, we will seek
additional user perspectives on user scenarios and obstacles. Upon
further improvement, we will formally evaluate the tool and its
impact on clinical decision-making by conducting systemic evalu-
ations with clinicians and other end users—with usability testing
like the system usability scale (SUS) questionnaire and controlled
studies.

Another limitation is the small number of longitudinal data to
visualize patients’ progression of mobility over time. We believe
that ongoing data collection efforts will enable better usage of the
progression plot. We also emphasize the importance of recruiting a
demographically and socio-economically diverse group of patients
and healthy control participants to mitigate downstream bias [18].
A diverse and accurate data presentation of patients will improve
the population estimates of Hevelius outcomes and facilitate more
equitable clinical research and treatment.

Acknowledgments

We thank our clinician participants for their valuable feedback. The
project benefited greatly from conversations with Jianna So, Faye
Xiao Hui Yang, Jakob Troidl, Zana Bucinca, Catherine Yeh, and
Elena L. Glassman. We also thank Siddharth Patel for his support
in obtaining the necessary data for the project.

This work was supported in part by the National Institutes of
Health under Grant No. R01 NS117826 and by the National Science
Foundation under Grant No. IIS-2107391. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Institutes of Health or the National Science Foundation.


https://Streamlit.io

Hevelius Report

References
[1] [n.d.]. factor_analyzer 0.5.1 documentation. https://factor-analyzer.readthedocs.
io/en/latest/ Accessed: 2024-08-13.
[2] [n.d.]. Neurobooth at Massachusetts General Hospital. https://neurobooth.mgh.
harvard.edu Accessed: 2024-08-13.
[3] [n.d.]. Streamlit. https://streamlit.io/. Accessed: 2024-06-19.
[4] Melissa J Armstrong and Michael S Okun. 2020. Diagnosis and treatment of

[11

[12

[13]

[14]

[15

[16

[17]

[18

[19

[20]
[21]

[22

[23

Parkinson disease: a review. JAMA 323, 6 (2020), 548-560.

Sivakumar Balasubramanian, Alejandro Melendez-Calderon, and Etienne Burdet.
2012. A robust and sensitive metric for quantifying movement smoothness.
IEEE Transactions on Biomedical Engineering 59, 8 (2012), 2126-2136.  https:
//doi.org/10.1109/TBME.2011.2179545

Steven Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel Schwartz, and
Scott Klemmer. 2011. Prototyping dynamics: sharing multiple designs improves
exploration, group rapport, and results. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (New York, NY, USA, 2011-05-07) (CHI ’11).
Association for Computing Machinery. https://doi.org/10.1145/1978942.1979359
Nicole M Eklund, Jessey Ouillon, Vineet Pandey, Christopher D Stephen, Jeremy D
Schmahmann, Jeremy Edgerton, Krzysztof Z Gajos, and Anoopum S Gupta. 2023.
Real-life ankle submovements and computer mouse use reflect patient-reported
function in adult ataxias. Brain Communications 5, 2 (March 2023), fcad064.
https://doi.org/10.1093/braincomms/fcad064

Batya Friedman. 1996. Value-sensitive design. 3, 6 (1996), 16-23. https://doi.org/
10.1145/242485.242493

Krzysztof Z Gajos and Lena Mamykina. 2022. Do people engage cognitively with
AI? Impact of Al assistance on incidental learning. In International Conference on
Intelligent user Interfaces. 794-806.

Krzysztof Z Gajos, Katharina Reinecke, Mary Donovan, Christopher D Stephen,
Albert Y Hung, Jeremy D Schmahmann, and Anoopum S Gupta. 2020. Computer
mouse use captures ataxia and parkinsonism, enabling accurate measurement
and detection. Movement Disorders 35, 2 (2020), 354-358.

Sucheta Ghoshal and Sayamindu Dasgupta. 2023. Design Values in Action:
Toward a Theory of Value Dilution. In Proceedings of the 2023 ACM Designing
Interactive Systems Conference (Pittsburgh, PA, USA) (DIS ’23). Association for
Computing Machinery, New York, NY, USA, 2347-2361. https://doi.org/10.1145/
3563657.3596122

Kate Goddard, Abdul Roudsari, and Jeremy C. Wyatt. 2012. Automation bias: a
systematic review of frequency, effect mediators, and mitigators. 19, 1 (2012),
121-127. https://doi.org/10.1136/amiajnl-2011-000089

John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society 28, 1 (1979), 100-108.
Jaimie Hixson, Jorge E Quintero, Ashley Guiliani, Tritia R Yamasaki, Greg A Ger-
hardt, John T Slevin, and Craig van Horne. 2023. Visualization of the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale Results. Journal of
Parkinson’s Disease (2023), 1-6.

Lisa ITezzoni, Ellen P McCarthy, Roger B Davis, and Hilary Siebens. 2001. Mobility
difficulties are not only a problem of old age. Journal of General Internal Medicine
16 (2001), 235-243.

Peter Jombik, Pavel Spodniak, Vladimir Bahy!l’, and Jan Necpal. 2020. Visualiza-
tion of Parkinsonian, Essential and Physiological Tremor Planes in 3D Space.
Physiological Research 69, 2 (2020), 331.

Ilir Jusufi, Dag Nyholm, and Mevludin Memedi. 2014. Visualization of spiral
drawing data of patients with Parkinson’s disease. International Conference on
Information Visualisation (2014), 346-350.

Rie Kamikubo, Lining Wang, Crystal Marte, Amnah Mahmood, and Hernisa
Kacorri. 2022. Data Representativeness in Accessibility Datasets: A Meta-Analysis.
In Proceedings of the 24th International ACM SIGACCESS Conference on Computers
and Accessibility (Athens, Greece) (ASSETS ’22). Association for Computing
Machinery, New York, NY, USA, Article 8, 15 pages. https://doi.org/10.1145/
3517428.3544826

Simeon Keates, Faustina Hwang, Patrick Langdon, P. John Clarkson, and Peter
Robinson. 2002. Cursor measures for motion-impaired computer users. In Assets
’02: Proceedings of the fifth international ACM conference on Assistive technologies
(Edinburgh, Scotland). ACM, New York, NY, USA, 135-142. https://doi.org/10.
1145/638249.638274

Ference Marton. 2014. Necessary conditions of learning. Routledge.

Fionn Murtagh and Pedro Contreras. 2012. Algorithms for hierarchical cluster-
ing: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2, 1 (2012), 86-97.

Vineet Pandey, Nergis C. Khan, Anoopum S. Gupta, and Krzysztof Z. Gajos. 2023.
Accuracy and Reliability of At-Home Quantification of Motor Impairments Using
a Computer-Based Pointing Task with Children with Ataxia-Telangiectasia. ACM
Transactions on Accessible Computing 16, 1 (March 2023), 10:1-10:25.  https:
//doi.org/10.1145/3581790

Neltje E Piro, Lennart K Piro, Jan Kassubek, and Ronald A Blechschmidt-Trapp.
2016. Analysis and visualization of 3D motion data for UPDRS rating of patients
with Parkinson’s disease. Sensors 16, 6 (2016), 930.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

ASSETS 24, October 27-30, 2024, St. John’s, NL, Canada

Katharina Reinecke and Krzysztof Z. Gajos. 2015. LabintheWild: Conducting
Large-Scale Online Experiments With Uncompensated Samples. In Proceedings
of the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing (Vancouver, BC, Canada) (CSCW ’15). ACM, New York, NY, USA,
1364-1378. https://doi.org/10.1145/2675133.2675246

Jeremy D. Schmahmann, Raquel Gardner, Jason MacMore, and Mark G. Vangel.
2009. Development of a Brief Ataxia Rating Scale (BARS) Based on a Modified
Form of the ICARS. 24, 12 (2009), 1820-1828. https://doi.org/10.1002/mds.22681
Jeremy D. Schmahmann, Samantha Pierce, Jason MacMore, and Gilbert J. L'Ttalien.
2021. Development and Validation of a Patient-Reported Outcome Measure of
Ataxia. Movement Disorders 36, 10 (Oct. 2021), 2367-2377. https://doi.org/10.
1002/mds.28670

Jianna So, Faye X Yang, Anoopum S Gupta, and Krzysztof Z Gajos. 2024. "It’s
Better to be Grounded in Reality": a Speculative Exploration of Patient-Centered
Digital Phenotyping for Neurological Conditions. In Proceedings of the 24th Inter-
national ACM SIGACCESS Conference on Computers and Accessibility (St. John’s,
Newfoundland and Labrador, Canada) (ASSETS °24). Assoiation for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3663548.3688486
Jonathan Synnott, Liming Chen, CD Nugent, and George Moore. 2010. As-
sessment and visualization of Parkinson’s disease tremor. In Proceedings of the
10th IEEE International Conference on Information Technology and Applications in
Biomedicine. IEEE, 1-4.

Mohsen Tavakol and Angela Wetzel. 2020. Factor Analysis: a means for theory
and instrument development in support of construct validity. International
Journal of Medical Education 11 (2020), 245.

Maryam Tohidi, William Buxton, Ronald Baecker, and Abigail Sellen. 2006. Get-
ting the right design and the design right. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (Montréal, Québec, Canada)
(CHI °06). Association for Computing Machinery, New York, NY, USA, 1243-1252.
https://doi.org/10.1145/1124772.1124960

Edward Tufte. 1990. ENVISIONING INFORMATION. Graphics Pr.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, 11 (2008).

Marley W. Watkins. 2018. Exploratory Factor Analysis: A Guide to Best Practice.
Journal of Black Psychology 44, 3 (April 2018), 219-246. https://doi.org/10.1177/
0095798418771807


https://factor-analyzer.readthedocs.io/en/latest/
https://factor-analyzer.readthedocs.io/en/latest/
https://neurobooth.mgh.harvard.edu
https://neurobooth.mgh.harvard.edu
https://streamlit.io/
https://doi.org/10.1109/TBME.2011.2179545
https://doi.org/10.1109/TBME.2011.2179545
https://doi.org/10.1145/1978942.1979359
https://doi.org/10.1093/braincomms/fcad064
https://doi.org/10.1145/242485.242493
https://doi.org/10.1145/242485.242493
https://doi.org/10.1145/3563657.3596122
https://doi.org/10.1145/3563657.3596122
https://doi.org/10.1136/amiajnl-2011-000089
https://doi.org/10.1145/3517428.3544826
https://doi.org/10.1145/3517428.3544826
https://doi.org/10.1145/638249.638274
https://doi.org/10.1145/638249.638274
https://doi.org/10.1145/3581790
https://doi.org/10.1145/3581790
https://doi.org/10.1145/2675133.2675246
https://doi.org/10.1002/mds.22681
https://doi.org/10.1002/mds.28670
https://doi.org/10.1002/mds.28670
https://doi.org/10.1145/3663548.3688486
https://doi.org/10.1145/1124772.1124960
https://doi.org/10.1177/0095798418771807
https://doi.org/10.1177/0095798418771807

ASSETS 24, October 27-30, 2024, St. John’s, NL, Canada
A Figures of visualization
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Figure 2: Factor analysis results. We performed factor analy-
sis on the Hevelius test results from 247,667 healthy control
participants and reduced the 32 Hevelius features to 6 factors.
The coefficients representing the relationship between each
factor and the features are displayed above. We mapped the
6 factors to 6 concepts: 1) deviation from straight line, 2) di-
rectional change from target, 3) pauses and jerks, 4) speed,
5) time inconsistency, and 6) speed inconsistency (Factors
1-6, respectively). Discussions with clinicians indicated that
these concepts are clinically relevant.
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Patient: 10053
Patient info: F (sex), 67 (age), Ataxia (diagnosis), 2017_10_12 (session date), 0 (days since first session)
Normative subpopulation: F, age 61-70 (n=3585)
Patient subpopulation: F, age 61-80 (n=27)
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Figure 3: Example summary plot for a Parkinson’s patient
for a given timepoint and concept. The plot on the left com-
pares the patient’s result with that of the relevant patient
and healthy control sub-populations. The plot on the right
shows the progression of the patient’s condition over time
and compares the patient’s progression with that of other
patients.
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Figure 4: Example trajectory plots for a Parkinson’s patient.
The plot compares the mouse trajectory of the patient (blue)
to example trajectories from healthy controls (gray) over
two Hevelius sessions (two columns). Users can choose to
see one average healthy control trajectory or a distribution
of up to 20 trajectories. The 5th, 50th, and 95th percentile
trajectories are selected based on a concept (in this example,
the "deviation from straight line" concept).
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Figure 5: Example time-speed plots for a Parkinson’s patient
over two Hevelius sessions. The plot shows the speed of the
mouse during the corresponding trajectories in the trajectory
plot (Figure 4). Users can choose to see one average healthy
control speed line (gray) or a distribution of up to 20 speed
lines. The initiation phase (time between the start of the task
and the start of mouse movement) is highlighted in the light

blue shaded area.
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B Other solutions explored
B.1 Concept Learning

In addition to factor analysis, we also explored other methods to per-
form dimensionality reduction, including k-means clustering [13],
t-SNE [32], and hierarchical clustering [21]. However, these meth-
ods had the following shortcomings. Although k-means clustering
and t-SNE can reduce a large number of features into a smaller
number of clusters, the relationship among features in each cluster
and, thus, the meaning of each cluster is difficult to interpret. For
hierarchical clustering, although the resulting dendrogram depicts
how features are related to each other in terms of distance in space,
it is unclear how to summarize a given cluster of features mathemat-
ically. For details, please see Figure 6. Because factor analysis not
only clearly indicates the relationship between each factor and the
features but also provides a way to mathematically summarize the
features (i.e., each factor is a linear combination of the features), we
chose to use factor analysis for the study. When performing factor
analysis, we explored the possibility of reducing the 32 features
to 4, 5, 6, and 7 factors. We ultimately selected 6 factors because
they provided a good balance between a small number of factors
explaining a large proportion of variance in the data.
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Figure 6: Hierarchical clustering. In addition to factor anal-
ysis, we also explored hierarchical clustering as another
method to reduce the dimensionality of the Hevelius features.
The dendrogram from the hierarchical clustering analysis is
displayed above. Although hierarchical clustering shows how
features are related to each other in terms of distance in space,
it is unclear how to summarize a given cluster of features
mathematically. Thus, we did not end up using hierarchical
clustering to reduce the dimensionality of the features.
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We also conducted factor analysis on patient subgroups instead
of healthy control populations to understand how the concept
groups differ. We found a high level of overlap among these results
and decided to use the concept groups based on the healthy control
populations due to their generalizability across different patient
groups.

B.2 Visualization

During the design of Hevelius visualizations, one key question
that came up repeatedly was how to show the distributions of
the healthy control subpopulation and the patient subpopulation.
For the summary plots, we obtained the distribution of values,
performed kernel density estimation to obtain a smooth curve, and
plotted this curve to represent the distribution. For the trajectory
and speed plots, based on discussions with our clinician collaborator,
we initially plotted three trajectories from the specified quantiles
from healthy control participants to provide some information
about the distribution of trajectories. However, discussions with
other clinicians revealed that some prefer seeing a single average
trajectory from the healthy control population instead. To account
for these different preferences, we designed the app to allow users
to specify the number of trajectories they want to see. For examples
of different prototypes during the development of the visualizations,
please see Appendix D (Figures 7, 8, and 9).

Another point of discussion was whether to normalize data
points to facilitate the comparison of patients’ progression in the
summary plots (Figure 3, right). In the plot, normalizing each pa-
tient’s data with respect to results from each patient’s first Hevelius
session would allow all the lines to start at the same starting point
and would allow for a clearer comparison of how each patient has
progressed since their first Hevelius session. However, the unnor-
malized data shows large variability in the patients’ starting points.
This information would be lost upon normalization and may mis-
guide the interpretation of the data, misleading one to believe that
patients are more similar than they actually are. Given these con-
cerns with normalized data, we opted to visualize the unnormalized
data.

B.3 Visualization Platform

In addition to Streamlit.io, we also considered building the user
interface using R Shiny and via our own website. Building our
own website would allow for great flexibility, but would also entail
unnecessary additional work of building various website structures
from scratch. In contrast, Streamlit.io and R Shiny are packages
that offer support in building interactive web apps, so we opted for
the latter two. We chose Streamlit.io over R Shiny to build the user
interface because Streamlit.io integrates seamlessly with Python
(the coding language used to create the data visualizations).

During the design process, we discussed the interface options,
such as having different pages for each data visualization or a
continuous scroll. Based on discussions with our collaborators,
we opted for a continuous scroll so that users could see multiple
visualizations simultaneously (if they choose to) and added a sidebar
menu to jump to different sections quickly.
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https://Streamlit.io
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C List of features in Hevelius test results

The Hevelius test results include 3 features related to patient and
session identification and 32 features related to mouse movement.
The 3 features related to patient and session identification are 1)
patient ID, 2) diagnosis, and 3) patient-session ID. The 32 features
related to mouse movement are:

(1) Standard deviation (computed over all trials in a block) of
the distance from the target center at the end of the first
submovement divided by the mean of peak accelerations

(2) Peak acceleration: maximum smoothed acceleration recorded
during a movement

(3) Peak speed: the maximum smoothed speed recorded during
a movement

(4) Click duration variability: standard deviation of click dura-
tions in a block of trials

(5) Verification time variability: standard deviation of verifica-
tion times in a block of trials

(6) Movement time variability: coefficient of variation of move-
ment times in a block of trials

(7) Execution time variability: coefficient of variation of execu-
tion times in a block of trials

(8) Execution time variability without pauses: coefficient of vari-
ation of execution times without pauses in a block of trials

(9) Movement time: complete movement time from target onset
to the end of the successful click on the target

(10) Peak acceleration: maximum smoothed acceleration recorded
during a movement

(11) Click duration: time between mouse button press and release
during the correct click on the target

(12) Click slip: distance between the point where the mouse but-
ton was pressed down and where it was released during click
on the target

(13) Distance from target center at the end of main submovement:
2D distance from the mouse pointer location at the end of
the main submovement to the target center

(14) Execution time: time from the first to the last mouse move-
ment, excluding any movement that occurred while the
mouse button was pressed

(15) Execution time without pauses: like execution time, but ex-
cludes pauses of 100ms or longer

(16) Fraction of remaining distance to the target center covered
in main submovement: fraction of the remaining distance
along the task axis covered during the main submovement

(17) Fraction of the main submovement spent accelerating: frac-
tion of the time from the start of the submovement to the
time when acceleration reached its peak value divided by
the overall duration of the submovement

(18) Main submovement: submovement with the highest peak
speed

(19) Maximum deviation from task axis: maximum distance of
the mouse pointer from the task axis during a movement

(20) Movement direction changes: number of times the move-
ment component orthogonal (vertical) to the task axis changes
sign

(21) Movement error: average absolute distance of the mouse
pointer from the task axis
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(22) Movement offset: average (non-absolute) distance of the
mouse pointer from the task axis

(23) Movement variability: standard deviation of the distance of
the actual path from the task axis

(24) Normalized jerk: dimensionless measure computed as nor-
malized jerk based on Pandey et al. [22]

(25) Normalized jerk without pauses: like normalized jerk, but
excludes parts of the movement when the mouse pointer
was paused for 100ms or longer

(26) Number of pauses: number of pauses of 100ms or longer

(27) Duration of the longest pause: duration of the longest pause
of 100ms or longer

(28) Orthogonal direction changes: number of times the move-
ment component parallel to the task axis changes sign

(29) Peak speed: maximum smoothed speed recorded during a
movement

(30) Task axis crossings: number of times the mouse pointer
crossed the task axis during the movement

(31) Verification time: time interval between the end of a move-
ment inside a target and the beginning of the click (i.e., the
time when the mouse button was pressed)

(32) Target re-entries: number of times the mouse pointer leaves
the target and then re-enters it before the start of the click
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D Development of data visualizations
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(b) Latest version

Figure 7: Development of summary plots, from (a) an earlier
version to (b) the latest version (same as Figure 3 in main
paper). In the latest version, we adjusted the color scheme
for consistency with trajectory and speed plots, added a star
indicating the visualized timepoint in the progression plot,
statistically tested the difference between the patient popu-
lation and control population, and noted the patient’s per-
centile with respect to the patient population and healthy
control population.
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(a) Design sketch
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(c) Latest version

Figure 8: Development of trajectory plots, from (a) a design
sketch to (b) an earlier version to (c) the latest version (same
as Figure 8 in main paper). After sketching potential designs,
we chose the design shown in (a) and implemented it in (b). In
contrast to the earlier version (b), which visualizes the best,
median, and worst trajectories, shows the average healthy
control trajectory in gray, and uses a red-green color scheme,
the latest version (c) visualizes the 5th, 50th, and 95th per-
centile trajectories, can show a single average or up to 20
healthy control trajectories in gray (user decides), and uses an
orange-blue color scheme consistent with the color scheme
in the summary and speed plots.
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Concept 3: Pauses and jerks
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Figure 9: Development of speed plots, from (a) an earlier version to (b) the latest version (same as Figure 9. In the earlier version,
users could only visualize the average speed line for a healthy control in gray. In the latest version, users can visualize a single
average or up to 20 healthy control speed lines in gray.
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E Development of user interface
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Figure 10: Design sketch for the user interface of the visual-
ization tool. Later, during the implementation, because the
amount of information and visualizations was too much to
display on one screen, we opted for a single-scroll continuous
page with a sidebar that allows users to jump to a section of
interest.
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