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ABSTRACT 
Millions of learners today use how-to videos to master new 
skills in a variety of domains. But browsing such videos is 
often tedious and inefficient because video player interfaces 
are not optimized for the unique step-by-step structure of such 
videos. This research aims to improve the learning experience 
of existing how-to videos with step-by-step annotations. 

We first performed a formative study to verify that annota­
tions are actually useful to learners. We created ToolScape, 
an interactive video player that displays step descriptions and 
intermediate result thumbnails in the video timeline. Learners 
in our study performed better and gained more self-efficacy 
using ToolScape versus a traditional video player. 

To add the needed step annotations to existing how-to videos 
at scale, we introduce a novel crowdsourcing workflow. It ex­
tracts step-by-step structure from an existing video, including 
step times, descriptions, and before and after images. We in­
troduce the Find-Verify-Expand design pattern for temporal 
and visual annotation, which applies clustering, text process­
ing, and visual analysis algorithms to merge crowd output. 
The workflow does not rely on domain-specific customiza­
tion, works on top of existing videos, and recruits untrained 
crowd workers. We evaluated the workflow with Mechanical 
Turk, using 75 cooking, makeup, and Photoshop videos on 
YouTube. Results show that our workflow can extract steps 
with a quality comparable to that of trained annotators across 
all three domains with 77% precision and 81% recall. 
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INTRODUCTION 
How-to videos on the web have enabled millions of learn­
ers to acquire new skills in procedural tasks such as fold­
ing origami, cooking, applying makeup, and using computer 
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Figure 1. Our crowdsourcing workflow extracts step-by-step informa­
tion from a how-to video with their descriptions and before/after images. 
It features the Find-Verify-Expand design pattern, time-based cluster­
ing, and text/visual analysis techniques. Extracted step information can 
be used to help learners navigate how-to videos with higher interactivity. 

software. These videos have a unique step-by-step structure, 
which encourages learners to sequentially process and per­
form steps in the procedure [29]. While most text- and image-
based tutorials (e.g., webpages) are naturally segmented into 
distinct steps, how-to video tutorials often contain a single 
continuous stream of demonstration. Because comprehen­
sive and accurate step-by-step information about the proce­
dure is often missing, accessing specific parts within a video 
becomes frustrating for learners. Prior research shows that 
higher interactivity with the instructional content aids learn­
ing [13, 28], and that the completeness and detail of step-by­
step instructions are integral to task performance [11]. 

To better understand the role of step-by-step information in 
how-to videos, we ran a formative study where learners per­
formed graphical design tasks with how-to videos. For this 
study, we designed ToolScape, an interactive how-to video 
player that adds step descriptions and intermediate result 
thumbnails to the video timeline. Learners using ToolScape 
showed a higher gain in self-efficacy and rated the quality 
of their own work higher, as compared to those using an or­
dinary video player. Moreover, external judges gave higher 
ratings to the designs produced by learners using ToolScape. 
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Providing such navigation support for how-to videos requires 
extracting step-by-step information from them. One solution 
is to ask instructors to include this information at tutorial gen­
eration time, but this adds overhead for instructors and does 
not solve the problem for existing videos. Another approach 
uses automatic methods such as computer vision. Previous re­
search [3, 26] has shown success in limited domains with ex­
tensive domain-specific customization. When working with 
“videos in the wild”, however, vision-based algorithms often 
suffer from low-resolution frames and a lack of training data. 
A scalable solution applicable beyond limited task domains 
and presentation formats is not yet available. 

To address the issues of high cost or limited scalability with 
existing methods, we introduce a crowdsourcing workflow 
for annotating how-to videos, which includes the Find-Verify-
Expand design pattern shown in Figure 1. It collects step­
by-step information from a how-to video in three stages: (1) 
find candidate steps with timestamps and text descriptions, 
(2) verify time and description for all steps, and (3) expand a 
verified step with before and after images. The workflow does 
not rely on domain-specific knowledge, works on top of exist­
ing videos, and recruits untrained, non-expert crowd workers. 
For quality control, the workflow uses time-based clustering, 
text processing, and visual analysis to merge results and deal 
with noisy and diverse output from crowd workers. 

To validate the workflow with existing how-to videos, we 
asked crowd workers on Mechanical Turk to annotate 75 
YouTube how-to videos spanning three domains: cooking, 
makeup, and graphics editing software. Results show that 
the crowd workflow can extract steps with 77% precision and 
81% recall relative to trained annotators. Successfully ex­
tracted steps were on average 2.7 seconds away from ground 
truth steps, and external evaluators found 60% of before and 
after images to be accurately representing steps. 

The contributions of this paper are as follows: 

•	 A how-to video player interface and experimental results 
showing that increased interactivity in a video player im­
proves learners’ task performance and self-efficacy. 

•	 A domain-independent crowd video annotation method 
and the Find-Verify-Expand design pattern for extracting 
step-by-step task information from existing how-to videos. 

•	 A novel combination of time-based clustering, text pro­
cessing, and visual analysis algorithms for merging crowd 
output consisting of time points, text labels, and images. 

•	 Experimental results that validate the workflow, which 
fully extracted steps from 75 readily available videos on 
the web across three distinct domains with a quality com­
parable to that of trained annotators. 

RELATED WORK 
We review related work in crowdsourcing workflows, video 
annotation, and tutorials. 

Crowdsourcing Workflows 
Research on multi-stage crowd workflows inspired the design 
of our method. Soylent [5] has shown that splitting tasks into 

the Find-Fix-Verify stages improves the quality and accuracy 
of crowd workers’ results. Other multi-stage crowdsourcing 
workflows were designed for nutrition information retrieval 
from food photos [24], activity recognition from streaming 
videos [21], and search engine answer generation [6]. These 
applications demonstrated that crowdsourcing can yield re­
sults comparable to those of experts at lower cost. Our work 
contributes to this line of research a novel domain, video an­
notation, by extending [18] and [23]. 

Video Annotation Methods 
This work focuses on providing a scalable and generalizable 
video annotation solution without relying on trained annota­
tors, experts, or video authors. Video annotation tools capture 
moments of interest and add labels to them. Many existing 
tools are designed for dedicated annotators or experts in lim­
ited context. Domain-specific plug-ins [8, 14, 15] automati­
cally capture task information, but require direct access to in­
ternal application context (e.g., Photoshop plug-ins accessing 
operation history). But plug-ins do not exist for most proce­
dural tasks outside of software applications (e.g., makeup), 
which limits the applicability of this method. 

Crowdsourcing video annotation has recently gained interest 
as a cost-effective method without relying on experts while 
keeping humans in the loop. Existing systems were designed 
mostly to collect training data for object recognition [31], mo­
tion tracking [30], or behavior detection [25]. Rather than use 
crowdsourcing to support qualitative researchers, this work 
supports end users learning from videos. Adrenaline [4] uses 
crowdsourcing to find the best frame from a video in near 
real-time. While [4] and our work both aim to detect a time-
specific event from a video stream, our work additionally la­
bels the event and expands to capture surrounding context. 

Interactive Tutorials 
In designing user interfaces for instructional videos, higher 
interactivity with the content has been shown to aid learn­
ing [13, 28]. Tversky et al. [28] state that “stopping, starting 
and replaying an animation can allow reinspection”, which 
in turn can mitigate challenges in perception and comprehen­
sion, and further facilitate learning. Semantic indices and ran­
dom access have been shown to be valuable in video naviga­
tion [32, 22], and the lack of interactivity has been deemed a 
major problem with instructional videos [16]. This work in­
troduces a user interface for giving learners more interactivity 
in video navigation, and a crowdsourcing method for acquir­
ing metadata handles to create such an interface at scale. 

Recent systems create interactive tutorials by either automat­
ically generating them by demonstration [8, 14], connecting 
to examples [26], or enhancing the tutorial format with an­
notated information [8, 9, 18, 20]. Our crowdsourcing work­
flow can provide annotations required to create these inter­
faces and further enable new ways to learn from tutorials. 

EFFICACY AND CHALLENGES OF VIDEO ANNOTATIONS 
To motivate the design of our crowdsourcing workflow for 
how-to video annotations, we first performed a formative 
study to (1) verify that annotations are actually useful to 



Figure 2. Progress in many how-to videos is visually trackable, as shown 
in screenshots from this Photoshop how-to video. Adding step annota­
tions to videos enables learners to quickly scan through the procedure. 

Figure 3. How-to videos often contain a series of task steps with visually 
distinct before and after states. Here the author applied the “Gradient 
map” tool in Photoshop to desaturate the image colors. 

learners, and (2) reveal the challenges of manually annotat­
ing videos and show the need for a more scalable technique. 

Annotations on How-To Videos 
How-to videos often have a well-defined step-by-step struc­
ture [15]. A step refers to a low-level action in performing a 
procedural task. Literature on procedural tasks suggests that 
step-by-step instructions encourage learners to sequentially 
process and perform steps in the workflow [29] and improve 
task performance [11]. Annotations can make such structure 
more explicit. In this paper, we define annotation as the pro­
cess of adding step-by-step information to a how-to video. 
In determining which information to annotate, we note two 
properties of procedural tasks. First, for many domains, task 
states are visually distinct in nature, so progress can be visu­
ally tracked by browsing through a video (Figure 2). Exam­
ples include food in cooking videos, a model’s face in makeup 
videos, and an image being edited in Photoshop videos. Sec­
ond, how-to videos contain a sequence of discrete steps that 
each advance the state of the task (Figure 3). Our annotation 
method uses these two properties to accurately capture a se­
quence of steps, extracting timestamps, textual descriptions, 
and before and after images for each step. 

We manually created a corpus of annotations for 75 how-to 
videos in three procedural task domains: cooking, applying 
makeup, and using Photoshop. We used this corpus to create 
our interface in the formative study, and ground truth data for 
evaluating our crowdsourcing workflow. We collected videos 
from YouTube’s top search results for “[domain] [task name]” 
(e.g., “cooking samosa”, “Photoshop motion blur”). 

Annotation-Aware Video Player: ToolScape 
To display step annotations, we created a prototype video 
player named ToolScape. ToolScape augments an ordinary 
web-based video player with a rich timeline containing links 
to each annotated step and its respective before and after 
thumbnail images (Figure 4). ToolScape is a Javascript 
library that manages a timestamped list of steps and be­
fore/after images, which can connect to any embedded video 
player with a “play from this time point” Javascript API call. 

In the timeline, the top and bottom streams represent anno­
tated steps and thumbnail images from the video, respectively 
(Figure 4(a), (c)). Clicking on a step or image moves the 

Figure 4. ToolScape augments a web-based video player with an interac­
tive timeline. Annotations are shown above the timeline (a), screenshots 
of intermediate states are shown below the timeline (c), and the gray re­
gions at both ends (b) show “dead times” with no meaningful progress 
(e.g., waiting for Photoshop to launch). 

video player’s slider to 5 seconds before the moment it oc­
curred. The 5-second buffer, determined from pilot testing, 
helps learners catch up with the context preceding the indi­
cated moment. Finally, ToolScape supports annotations of 
“dead times” at the beginning and end of videos (Figure 4(b)), 
which often contain introductory or concluding remarks. Pi­
lot user observations showed that learners often skip to the 
main part of the tutorial. In our manually annotated video 
corpus, on average, 13.7% of time at the beginning and 9.9% 
at the end were “dead times” with no task progress. 

Formative Study Design 
To assess the effects of step annotations, we ran a formative 
study on novice Photoshop learners watching how-to videos 
on image manipulation tasks. We compared the experiences 
of learners using ToolScape and a baseline video player with­
out the interactive timeline. We hypothesized that interacting 
with step annotations provided by ToolScape improves both 
task performance and learner satisfaction. Specifically: 

H1 Learners complete design tasks with a higher self-efficacy 
gain when watching how-to videos with ToolScape. 

H2 Learners’ self-rating of the quality of their work is higher 
when watching with ToolScape. 

H3 Learners’ designs when watching with ToolScape are 
rated higher by external judges. 

H4 Learners show higher satisfaction with ToolScape. 

H5 Learners perceive design tasks to be easier when watching 
with ToolScape. 

In addition to external ratings (H3), our measures of success 
include self-efficacy (H1) and self-rating (H2). In the context 
of how-to videos, these measures are more significant than 



Figure 5. These task instructions are shown before the participant starts 
working on their image manipulation task. It includes a description of 
the effect to be implemented and a before-and-after example image pair. 

just user preference. Educational psychology research shows 
that self-efficacy, or confidence in application of skills, is an 
effective predictor of motivation and learning [2, 33]. Positive 
self-rating has also been shown to accurately predict learning 
gains [27]. Finally, we chose not to count errors made in 
repeating tutorial steps as in [8], because our goal was to help 
users explore and learn new skills in open-ended design tasks. 

Participants: We recruited twelve participants through uni­
versity mailing lists and online community postings. Their 
mean age was 25.2 (σ = 3.2), with 8 males and 4 females. 
Most rated themselves as novice Photoshop users, but all had 
at least some experience with Photoshop. They received $30 
for up to two hours of participation, on either a Mac or PC. 

Tasks and Procedures: Our study had 2 x 2 conditions: two 
tasks each using ToolScape and baseline video players. We 
used a within-subject design with interface, task, and order 
counterbalanced. Each participant performed two image ma­
nipulation tasks in Photoshop: applying retro effect and trans­
forming a photo to look like a sketch. In both interface con­
ditions, we provided participants with the same set of how-to 
videos; the interface was the only difference. In addition, we 
disallowed searching for other web tutorials to ensure that any 
effect found in the study comes from the interaction method, 
not the content. 

After a tutorial task covering all features of the video 
player interface, we asked participants self-efficacy questions 
adapted from Dow et al. [10], whose study also measured 
participants’ self-efficacy changes in a design task. The ques­
tions asked: On a scale of 1 (not confident at all) to 7 (very 
confident), how confident are you with. . . 

• solving graphic design problems? 
• understanding graphic design problems? 
• applying design skills in practice? 
• incorporating skills from video tutorials in your design? 

Next, participants attempted two 20-minute image manipula­
tion tasks in Photoshop, with instructions shown in Figure 5. 

Participants could freely browse and watch the 10 how-to 
videos we provided (with annotations in the ToolScape con­
dition). After each task, we asked questions on task difficulty, 
self-rating, and interface satisfaction. We also asked the self-
efficacy questions again to observe any difference, followed 
by a 15-minute open-ended interview. 

Finally, we asked four external judges to evaluate the quality 
of all transformed images by ranking them, blind to user and 
condition. They ranked the images from best to worst, based 
on how well each participant accomplished the given task. 

Formative Study Results 
H1 (higher self-efficacy for ToolScape) is supported by our 
study. For the four self-efficacy questions, we take the mean 
of the 7-point Likert scale ratings as the self-efficacy score. 
The participants’ mean initial score was 3.8; with the baseline 
video player, the score after the task was 3.9 (+0.1) whereas 
with ToolScape the score was 5.2 (+1.4), which meant that 
learners felt more confident in their graphical design skills 
after completing tasks with ToolScape. (For H1, H2, and H4, 
differences between interfaces were significant at p<0.05 us­
ing a Mann-Whitney U test.) 

H2 (higher self-rating for ToolScape) is supported. Par­
ticipants rated their own work quality higher when using 
ToolScape (mean rating of 5.3) versus baseline (mean of 3.5). 

H3 (higher external judge rating for ToolScape) is supported. 
The overall ranking was computed by taking the mean of 
the four judges’ ranks. The mean rankings (lower is better) 
for output images in the ToolScape and Baseline conditions 
were 5.7 and 7.3, respectively. A Wilcoxon Signed-rank test 
indicates a significant effect of interface (W=317, Z=-2.79, 
p<0.01, r=0.29). Furthermore, nine of the twelve participants 
produced higher-rated images with ToolScape. The ranking 
method yielded high inter-rater reliability (Krippendorff ’s al­
pha=0.753) for ordinal data. 

H4 (higher satisfaction with ToolScape) is supported. Mean 
ratings for ToolScape and Baseline were 6.1 and 4.5, respec­
tively. 

H5 (easier task difficulty perception for ToolScape) is not 
supported: The mean ratings for ToolScape and Baseline 
were 4.0 and 3.7, respectively. Combined with H2 and H3, 
this might indicate that participants did not find the tasks eas­
ier yet still produced better designs with greater confidence. 

In conclusion, ToolScape had a significant effect on learn­
ers’ belief in their graphical design skills and output quality. 
They also produced better designs as rated by external judges. 
Note that participants were watching the same video content 
in both conditions. Thus, the video annotation browsing in­
terface affected design outcomes. Participants especially en­
joyed being able to freely navigate between steps within a 
video by clicking on annotations. 

Lessons for Video Browsing Interfaces 
The features of ToolScape that provided higher interactivity 
and non-sequential access were highly rated and frequently 
used. In participants’ responses to the 7-point Likert scale 



questions on the usability of interface features, the time-
marked image thumbnails (6.4) and step links (6.3) were 
among the highest rated, as well as the graying out of “dead 
times” with no workflow progress (6.5). Participants noted, 
“It was also easier to go back to parts I missed.”, “I know 
what to expect to get to the final result.”, and “It is great for 
skipping straight to relevant portions of the tutorial.” 

All participants frequently used the ability to click on time-
line links to navigate directly to specific images and steps. 
They clicked the interactive timeline links 8.9 times on av­
erage (σ = 6.7) in a single task. We also analyzed the 
tracking log, which records an event when the user clicks 
on an interactive link or a pause button, or drags the play-
head to another position. The learners watched videos less 
linearly with ToolScape: The ToolScape condition recorded 
150 such events, versus only 96 in the Baseline condition. In 
ToolScape, 107 out of 150 events were interactive link clicks 
and 43 were pause button clicks or direct scrubbing on the 
player. These findings indicate that interactive links largely 
replaced the need for pause or scrubbing, and encouraged the 
stepwise navigation of the procedure. 

Lessons for How-To Video Annotation 
The study results suggest that annotated step information 
makes how-to videos much more effective for learners. How­
ever, the bottleneck is in obtaining the annotations. Here are 
some lessons from our experience annotating videos by hand: 

•	 Extracting step information from how-to videos involves 
detecting timing, generating a natural language description 
of a step, and capturing before and after states. 

•	 It often requires multi-pass watching, which adds to task 
complexity. Before knowing what each step is, the annota­
tor cannot extract before and after thumbnail images. This 
experience supports a design choice to split the work into 
multiple stages so that in each stage, the annotator’s atten­
tion is focused on a single, simple task. 

•	 Hand annotation is time-consuming. Roughly three times 
the original video length was required by trained annotators 
to annotate each how-to video. 

•	 Timing detection is difficult. Sometimes there is an interval 
between when a step is spoken and demonstrated. Also, if 
the goal is to find a starting time of a step, the annotator has 
to watch, verify, and scroll back to mark as a valid step. 

These lessons informed the design of our crowdsourced how-
to video annotation method, which we now present. 

CROWDSOURCING WORKFLOW: FIND-VERIFY-EXPAND 
Using lessons from our formative study, we designed a three-
stage crowdsourcing workflow for annotating how-to videos 
with procedural steps, timings, textual descriptions, and be­
fore and after thumbnail images. This workflow works with 
any how-to video regardless of its domain, instructional style, 
and presentation. It also collects annotations with untrained 
crowd workers (e.g., workers on Mechanical Turk). 

Figure 6. In the Find stage, the crowd worker adds new steps to the 
timeline by clicking on the “New Instruction” button. 

Figure 7. Upon clicking on the “New Instruction” button, a popup win­
dow asks the worker to describe what the step is about in free-form text. 

Inspired by crowd design patterns that segment a bigger task 
into smaller micro-tasks [5], our workflow decomposes the 
annotation task into three stages and each video into shorter 
segments. This design addresses the task complexity and 
multi-pass overhead problems of manual annotation. 

We developed a generalizable crowd workflow pattern called 
Find-Verify-Expand (Figure 1) for detecting temporal and 
visual state changes in videos, such as steps in a how-to video, 
highlights from a sports game, or suspicious incidents from a 
surveillance video. The unique Expand stage captures sur­
rounding context and causal relationships (e.g., before/after 
images for a step in a how-to video) by expanding on the de­
tected event (e.g., a step in a how-to video). To better handle 
crowd output coming from timing detection and image selec­
tion, we apply clustering algorithms and text and visual anal­
ysis techniques to intelligently merge results from workers. 

Stage 1: FIND candidate steps 
This crowd task collects timestamps and text descriptions for 
possible steps from a video segment. While watching the 
video, the worker adds a step by clicking on the “New In­
struction” button every time the instructor demonstrates a step 
(Figure 6). Each time the worker clicks on the button, the task 
prompts the worker to describe the step in free-form text (Fig­
ure 7). The same segment is assigned to three workers, whose 
results get merged to create candidate steps. 

Pre-processing: A video is segmented into one-minute 
chunks. We learned from pilot runs that longer video seg­
ments lead to lower annotation accuracy toward the end and 
slower responses on Mechanical Turk. However, a drawback 
in using segmented video is the possibility of missing steps 



Figure 8. Our clustering algorithm groups adjacent time points into a 
candidate step. It further adds a potential cluster as a candidate, which 
might turn out to be a proper step once checked in the Verify stage. This 
inclusive strategy mitigates the effect of clustering errors. 

near segment borders. We address this issue by including a 
five-second overlap between segments, and attaching the final 
segment to the prior one if it is shorter than 30 seconds. 

Task Design: For quality control, the task first ensures that 
the user has audio by giving a test that asks the worker to type 
in a word spoken from an audio file. Our pilot runs showed 
that labeling accuracy drops significantly when the worker 
does not listen to audio. Secondly, we disable the Submit but­
ton until the video playhead reaches the end to ensure that the 
worker watches the entire segment. Finally, when the worker 
clicks on the “New Instruction” button, the video pauses and 
a dialog box pops up to ask what the step was. Our initial 
version simply added a tick on the timeline and continued 
playing without pausing or asking for a label. But this re­
sulted in workers clicking too many times (as many as 100 
for a 60-second chunk) without thinking. The prompt adds 
self-verification to the task, which encourages the worker to 
process the workflow by each step. The prompt also includes 
an example label to show the format and level of detail they 
are expected to provide (Figure 7). 

Post-Processing: The workflow intelligently merges results 
from multiple workers to generate step candidates. To cluster 
nearby time points given by different workers into a single 
step, we use the DBSCAN clustering algorithm [12] with a 
timestamp difference as the distance metric. The clustering 
idea is shown in Clusters 1 and 2 in Figure 8. The algorithm 
takes E as a parameter, which is defined by the maximum dis­
tance between two points that can be in a cluster relative to the 
distance between farthest points. We train E once initially on 
a small set of pilot worker data and ground truth labels. Our 
tests show that the values between 0.05 and 0.1 yield high 
accuracy, regardless of domain or video. We configured the 
algorithm to require at least two labels in every cluster, simi­
lar to majority voting among the three workers who watched 
the segment. We considered other clustering algorithms such 
as K-Means, but many require the number of clusters as an 
input parameter. In video annotation, the number of steps is 
neither known a priori nor consistent across videos. 

Depending on videos and parameters, the DBSCAN algo­
rithm might over-generate (false positive) or under-generate 

Figure 9. The Verify stage asks the worker to choose the best description 
of a candidate step. The options come from workers in the Find stage. 
Additional default options allow the worker to either suggest a better 
description or mark the step as invalid. 

(false negative) clusters. We bias the algorithm to over-
generate candidate steps (‘potential cluster’ in Figure 8) and 
aim for high recall over high precision, because the first stage 
is the only time the workflow generates new clusters. We im­
prove the initial clusters in three ways, with the goal of higher 
recall than precision. First, we take into account the textual 
labels to complement timing information. The clustering ini­
tially relies on workers’ time input, but using only time might 
result in incorrect clusters because steps are distributed un­
evenly time-wise. Sometimes there are steps every few sec­
onds, and other times there might be no step for a minute. We 
run a string similarity algorithm between text labels in border 
points in clusters, to rearrange them to the closer cluster. Sec­
ond, we break down clusters that are too large by disallowing 
multiple labels from one worker to be in a cluster. Finally, if 
there are multiple unclustered points within E between clus­
ters, we group them into a candidate cluster. For each cluster, 
we take a mean timestamp as the representative time to ad­
vance to the Verify stage. 

Stage 2: VERIFY steps 
Here the worker’s verification task is to watch a 20-second 
clip that includes a candidate step and textual descriptions 
generated from the prior stage, and vote on the best descrip­
tion for the step (Figure 9). The workflow assigns three work­
ers to each candidate step, whose votes are later merged. 

Pre-processing: For each of the candidate steps from Stage 
1, the workflow segments videos into 20-second clips around 
each step (10 seconds before and after). 

Task Design: To prevent workers from selecting the first re­
sult without reviewing all options, we randomize the order of 
options presented each time. We also lowercase all labels 
to prevent capitalized descriptions from affecting the deci­
sion. Also, the Submit button becomes clickable only after 
the worker finishes watching the 20-second clip. 

In addition to candidate text descriptions, two additional op­
tions are presented to workers: “I have a better description”, 



Figure 10. The Expand stage asks the worker to choose the best before 
and after images for a step. The worker visually reviews the thumbnail 
options and clicks on images to decide. 

which improves the step label, and “There is no instruction”, 
which filters out false positives from Stage 1. 

Post-Processing: Two possible outputs of this stage are 1) 
finalizing the timestamp and description for a valid step, or 2) 
removing a false step. The workflow uses majority voting to 
make the final decision: If two or more workers agreed on a 
description, it becomes the final choice. If workers are split 
between three different options, it checks if some of the se­
lected text descriptions are similar enough to be combined. 
We first remove stop words for more accurate comparisons, 
and then apply the Jaro-Winkler string matching algorithm 
[17]. If the similarity score is above a threshold we config­
ured with initial data, we combine the two descriptions with 
a longer one. If not, it simply picks the longest one from the 
three. The decision to pick longer description for tie-breaking 
comes from a pilot observation that longer descriptions tend 
to be more concrete and actionable (e.g., “grate three cups of 
cheese” over “grate cheese”). 

Stage 3: EXPAND with before and after images for steps 
This final stage collects the before and after images of a step, 
which visually summarize its effect. This stage captures sur­
rounding context and causal relationships by expanding on 
what is already identified in Find and Verify. The worker’s 
task here is to watch a 20-second video clip of a step, and se­
lect a thumbnail that best shows the work in progress (e.g., 

Figure 11. Our evaluation uses the Hungarian method to match ex­
tracted and ground truth steps with closest possible timestamp within a 
10-second window size. Then we compute precision and recall, which in­
dicate if our workflow over- or under-extracted steps from ground truth. 

food, face, or Photoshop image) before and after the step 
(Figure 10). The workflow assigns three workers to each step. 

Pre-processing: This stage uses a 20-second video clip of 
a step verified in Stage 2, and uses its final text label to de­
scribe the step. It creates thumbnails at two-second intervals 
to present as options, 10 seconds before and after the step. 

Task Design: Our initial design asked workers to click when 
they see good before and after images, but this resulted in low 
accuracy due to variable response time and the lack of visual 
verification. We then simplified the task to a multiple choice 
question. Selecting from static thumbnail images makes the 
task easier than picking a video frame. 

Post-Processing: Similar to the Verify stage, we apply ma­
jority voting to determine the final before and after images. 
For merging and tie breaking, we use Manhattan distance, an 
image similarity metric that computes pixel differences be­
tween two images. 

EVALUATION 
We deployed our annotation workflow on Mechanical Turk 
and evaluated on: 

•	 Generalizability: Does the workflow successfully gener­
ate labels for different types of how-to tasks in different 
domains with diverse video production styles? 

•	 Accuracy: Do collected annotations include all steps in the 
original video, and avoid capturing too many (false posi­
tive) or too few (false negative)? How do textual descrip­
tions generated by crowd workers compare to those gener­
ated by trained annotators? 

Methodology 
We used our workflow and Mechanical Turk to fully extract 
step information from the 75 how-to videos in our annotation 
corpus, with 25 videos each in cooking, makeup, and graphics 
editing software (Photoshop). We did not filter out videos 
based on use of subtitles, transitions, or audio, to see if our 
annotation workflow is agnostic to presentation styles. Out of 
75 videos in our set, 7 did not have audio, and 27 contained 
text overlays. For each domain, we picked five tasks to cover 
diverse types of tasks: Cooking – pizza margherita, mac and 
cheese, guacamole, samosa, and bulgogi; Makeup – bronze 
look, reducing redness, smokey eyes, bright lips, and summer 



glow; Photoshop: motion blur, background removal, photo to 
sketch, retro effect, and lomo effect. The mean video length 
was 272 seconds, summing to over 5 hours of videos. 

Results 
Our evaluation focuses on comparing the quality of step in­
formation produced by our crowdsourcing workflow against 
ground truth annotations from our corpus. 

The Turk crowd and trained annotators (two co-authors 
with educational video research experience) generated similar 
numbers of steps (Table 1). In Stage 1, 361 one-minute video 
segments were assigned to Turkers, who generated 3.7 candi­
date steps per segment, or 53.6 per video. Clustering reduced 
that to 16.7 steps per video. Stage 2 further removed over-
generated steps, resulting in 15.7 per video, which is nearly 
equivalent to the ground truth of 15 steps per video. 

Precision indicates how accurate extracted steps are com­
pared to ground truth, while recall shows how comprehen­
sively the workflow extracted ground truth steps (Figure 11). 
We present precision and recall results considering only the 
timing of steps (Stage 1), and both the timing and the tex­
tual description accuracy (Stage 2). For matching crowd-
extracted steps to ground truth steps, we use the Hungarian 
method [19] whose cost matrix is filled with a time distance 
between steps. 

Evaluating Stage 1: FIND 
We consider only precision and recall of times in the Stage 1 
evaluation because final textual descriptions are not yet deter­
mined. Detecting the exact timing of a step is not straightfor­
ward, because most steps take place over a time period, verbal 
and physical steps are commonly given with a time gap. 

To more accurately account for the timing issue, we set a 
highest threshold in time difference that accepts a Turker­
marked point as correct. We set the threshold to 10 seconds, 
which indicates that a step annotation more than 10 seconds 
off is discarded. This threshold was based on heuristics from 
step intervals in our corpus: We hand-annotated, on average, 
one step every 17.3 seconds in our video corpus (mean video 
length / number of steps in ground truth = 272/15.7), so a 
maximum 10-second difference seems reasonable. 

The mean distance between ground truth steps and extracted 
steps (ones within 10 seconds of the ground truth) was only 
2.7 seconds. This suggests that for matched steps, the time-
based clustering successfully detected the timing information 
around this distance. When considering only time accuracy, 
our workflow shows 0.76 precision and 0.84 recall (Table 2). 

Evaluating Stage 2: VERIFY 
Here we combine the accuracy of both timing and text de­
scriptions. Precision for this stage captures what fraction of 
steps identified by the workflow are both placed correctly on 
the time line and whose description reasonably matches the 
ground truth. The analysis shows 0.77 precision and 0.81 re­
call over all the videos (Table 2). 

For text accuracy measurement, we use the string similarity 
algorithm to see if a suggested description is similar enough 

By Turkers After Stage1 After Stage2 Ground Truth 
53.6 16.7 15.7 15.0 

Table 1. The mean number of steps generated by the workflow in each 
stage. At the end the workflow extracted 15.7 steps per video, which 
is roughly equivalent to 15.0 from ground truth. Stage 1 clusters the 
original Turker time points, and Stage 2 merges or removes some. 

Stage 1. Time only Stage 2. Time + Text 
Precision Recall Precision Recall 

0.76 0.84 0.77 0.81 
Table 2. When considering time information only, recall tends to be 
higher. When considering both time and text descriptions, incorrect text 
labels lower both precision and recall, but removing unnecessary steps 
in Stage 2 recovers precision. 

to a description from ground truth. We apply the same thresh­
old as what we configured in the workflow for tie breaking in 
the Verify stage. The precision and recall both go down when 
the text similarity condition is added, but precision recovers 
from the post-processing of steps in this stage. Two enhance­
ments contribute to this recovery: removing steps that work­
ers indicated as “no instruction” from the task, and merging 
nearby steps that have identical descriptions. 

In 76% of the steps, two or more Turkers agreed on a single 
description. For the rest, the tie breaking process determined 
the final description. For 13% of the steps, Turkers provided 
their own description. 

Evaluating Stage 3: EXPAND 
This evaluation should judge if crowd-selected before and af­
ter images correctly capture the effect of a step. Because this 
judgment is subjective, and there can be multiple correct be­
fore and after images for a step, we recruited six external hu­
man evaluators to visually verify the images. We assigned 
two evaluators to each domain based on their expertise and 
familiarity with the domain, and gave a one-hour training 
session on how to verify before and after images. For each 
workflow-generated step, we presented an extracted text de­
scription along with a before and after image pair. Their task 
was to make binary decisions (yes / no) on whether each im­
age correctly represents the before or after state of the step. 

We used Cohen’s Kappa to measure inter-rater agreement. 
The values were 0.57, 0.46, 0.38, in cooking, makeup, and 
Photoshop, respectively, which show a moderate level of 
agreement [1]. Results show that on average, both raters 
marked 60% of before and after images as correct. At least 
one rater marked 81.3% as correct. 

Cost, time, and tasks 
We created a total of 8,355 HITs on Mechanical Turk for an­
notating 75 videos. With three workers on each task and a re­
ward of $0.07, $0.03, and $0.05 for Find, Verify, and Expand, 
respectively, the average cost of a single video was $4.85, or 
$1.07 for each minute of a how-to video. The Expand stage 
was more costly ($2.35) than the first two; thus, time points 
and text descriptions can be acquired at $2.50 per video. The 
average task submission time was 183, 80, and 113 seconds 
for Find, Verify, and Expand, respectively. 



Results summary 
In summary, our workflow successfully extracted step in­
formation from 75 existing videos on the web, generalizing 
to three distinct domains. The extracted steps on average 
showed 77% precision and 81% recall against ground truth, 
and were 2.7 seconds away from ground truth. Human evalu­
ators found 60% of before and after images to be accurate. 

DISCUSSION AND LIMITATIONS 
We now discuss qualitative findings from the experiment, 
which might have practical implications for future re­
searchers designing crowd workflows. 

Detecting precise timing of a step. We observed that Turkers 
add new steps with higher latency than trained annotators, re­
sulting in Turker-labeled time points being slightly later than 
those by annotators for the same step. The trained annotators 
often rewinded a few seconds to mark the exact timing of a 
step after seeing the step, whereas most Turkers completed 
their tasks in a single pass. While this might be a limitation 
of the workflow, our results show that a reasonable window 
size mitigates such differences. We will explore time-shifting 
techniques to see if timing accuracy improves. 

Handling domain and video differences. Extraction accu­
racy in our workflow was consistent across the three domains 
with different task properties. This finding validates our 
domain-agnostic approach based on the general properties of 
procedural tasks. Photoshop videos were often screencasts, 
whereas cooking and makeup videos were physical demon­
strations. Cooking videos contained higher number and den­
sity of steps than makeup or Photoshop videos, while Photo-
shop and makeup videos often had longer steps that required 
fine-grained adjustments and tweaking. Also, some videos 
were studio-produced with multiple cameras and high-quality 
post-processing, while others were made at home with a we­
bcam. Our workflow performed robustly despite the various 
differences in task properties and video presentation styles. 

Extracting steps at different conceptual levels. Video in­
structors present steps at different conceptual levels, and this 
makes it difficult to keep consistent the level of detail in Turk­
ers’ step detection. In a makeup video, an instructor said 
“Now apply the bronzer to your face evenly”, and shortly af­
ter applied the bronzer to her forehead, cheekbones, and jaw­
line. While trained annotators captured this process as one 
step, our workflow produced four, including both the high-
level instruction and the three detailed steps. Turkers gener­
ally captured steps at any level, but our current approach only 
constructs a linear list of steps, which sometimes led to redun­
dancy. Previous research suggests that many procedural tasks 
contain a hierarchical solution structure [7], and we plan to 
extend this work to hierarchical annotation. 

POSSIBLE APPLICATIONS AND GENERALIZATION 
We list possible applications that leverage step information 
extracted from our workflow, and discuss ways to generalize 
the Find-Verify-Expand pattern beyond how-to videos. 

Our scalable annotation workflow can enable a series of novel 
applications in addition to the ToolScape player. First, better 

video search can be made possible with finer-grained video 
indices and labels. For example, ingredient search for cook­
ing or tool name search for Photoshop can show all videos 
and time points that cover a specific tutorial element. Fur­
thermore, video players can present alternative examples to 
a current step. If a learner is watching how to apply the 
eyeliner, the interface can show just the snippets from other 
videos that include demonstrations of the eyeliner. This al­
lows the learner to hop between different use cases and con­
text for the step of interest, which can potentially improve 
learning outcomes. 

We believe the Find-Verify-Expand pattern can generalize to 
annotating broader types of metadata beyond steps from how-
to videos. For example, from a soccer video this pattern can 
extract goal moments with Find and Verify, and then use Ex­
pand to include a crucial pass that led to the goal, or a cere­
mony afterward. Generally, the pattern can extract metadata 
that is human-detectable but hard to completely automate. It 
is a scalable method for extracting time-sensitive metadata 
and annotating streaming data, which can be applied to video, 
audio, and time-series data. 

CONCLUSION AND FUTURE WORK 
This paper presents a scalable crowdsourcing workflow for 
annotating how-to videos. The Find-Verify-Expand pattern 
efficiently decomposes the complex annotation activity into 
micro-tasks. Step information extracted from the work­
flow can enable new ways to watch and learn from how-to 
videos. We also present ToolScape, an annotation-enabled 
video player supporting step-by-step interactivity, which is a 
potential client of this workflow. Our lab study shows the 
value of accessing and interacting with step-by-step informa­
tion for how-to videos. Participants watching videos with 
ToolScape gained higher self-efficacy, rated their own work 
higher, and produced higher-rated designs. 

Our future work will explore applying the workflow to addi­
tional procedural task domains such as origami, home DIY 
tasks, and Rubik’s cube. We will also explore procedural 
tasks that require a conceptual understanding of the underly­
ing concept, such as solving algorithm or physics problems. 

Another direction for research is collecting task information 
using learners as crowd. We believe learners can potentially 
provide more advanced, higher-level, and richer information 
not possible with Turkers, if their learning interactions can 
naturally provide useful input to the system. Combining 
crowdsourcing with “learnersourcing” can extract rich anno­
tations from existing resources while enhancing learning. 
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