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INTRODUCTION
The growing importance of ubiquitous computing has
motivated an outburst of research on automatic genera-
tion of user interfaces for different devices (e.g., [6] or our
own Supple [4]). In some cases, care is taken to ensure
that similar functionality is rendered similarly across dif-
ferent applications on the same device [5]. However, we
also need to ensure that after using an application on one
device (say, a PDA) and having learned that user inter-
face, the user will not have to expend much effort having
to learn a brand-new user interface for the same appli-
cation when moving to a new platform (e.g., a touch
panel). We have began to extend our Supple system in
a way that allows it to produce interfaces that make a
trade off between optimality given a new platform and
similarity to the previously rendered user interfaces for
the same application. In particular:

• we show how to incorporate an interface dissimilarity
metric into a UI generation process resulting in new
interfaces resembling ones previously used by the user;

• we propose a list of most salient widget features that
can be used to asses similarity of interfaces rendered
on radically different platforms;

• and we outline the most promising approaches for au-
tomatically learning parameters of a UI dissimilarity
function from user feedback.

INTERFACE GENERATION AS OPTIMIZATION
We cast the user interface generation and adaptation
as a decision-theoretic optimization problem, where the
goal is to minimize the estimated user effort for manip-
ulating a candidate rendering of the interface. Supple
takes three inputs: a functional interface specification, a
device model and a user model. The functional descrip-
tion defines the types of data that need to be exchanged
between the user and the application. The device model
describes the widgets available on the device, as well as
cost functions, which estimate the user effort required
for manipulating supported widgets with the interaction
methods supported by the device. Finally, we model a
user’s typical activities with a device- and rendering-
independent user trace. Details of these models and
rendering algorithms are available in [4].

We have now extended our cost function to include a
measure of dissimilarity between the current rendering
φ and a previous reference rendering φref :

$(φ, T , φref ) = $(φ, T ) + αsS(φ, φref )

Here, T stands for a user trace (which allows Supple to
personalize the rendering), $(φ, T ) is the original cost
function (as in [4]) and S(φ, φref ) is a dissimilarity met-
ric. The user-tunable parameter αs controls the trade-
off between a design that would be optimal for the cur-
rent platform and one that would be maximally similar
to the previously seen interface (see Figure 1).

We define the dissimilarity metric as a linear combina-
tion of K factors fk : W ×W 7→ {0, 1}, which for any
pair of widgets return 0 or 1 depending on whether or
not the two widgets are similar according to a certain
criterion. Each factor corresponds to a different crite-
rion. To calculate the dissimilarity, we iterate over all
elements e of the functional specification E of an inter-
face and sum over all factors:

S(φ, φref ) =
∑
e∈E

K∑
k=1

ukfk(φ(e), φref (e))

In the following two sections we will discuss what widget
features we have identified as good candidates for con-
structing the factors and how we can learn their relative
weights uk.

RELEVANT WIDGET FEATURES
To find the relevant widget features for comparing inter-
face renderings across different platforms, we generated
interfaces for several different applications for several
different platforms and we picked sets that we consid-
ered most similar. We have identified a number of wid-
get features sufficient to explain all the results we gener-
ated. The following are the features of primitive widgets
(i.e., widgets used to directly manipulate functionality):

Language {toggle, text, position, icon, color} – the
primary method(s) the widget uses to convey its value;
for example, the slider uses the position, list uses text
and position, checkbox uses toggle.

Domain visibility {full, partial, current value} – some
widgets, like sliders, show the entire domain of possi-
ble values, lists and combo boxes are likely to show
only a subset of all possible values while spinners only
show the current value.
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Figure 1: A basic example: (a) a reference touch panel rendering of a classroom controller interface, (b) the rendering
Supple considered optimal on a keyboard and pointer device in the absence of similarity information, (c) the rendering
Supple produced with the touch panel rendering as a reference (the dissimilarity function parameters were set manually).

Orientation of data presentation {vertical, horizon-
tal, circular} – if the domain of possible values is at
least partially visible, there are different ways of ar-
ranging these values.

Continuous/discrete – indicates whether or not a wid-
get is capable of changing its value along a continuous
range (e.g., a slider can while a list or a text field are
considered discrete).

Variable domain {yes, no} – the domain of possible
values can be easily changed at run time for some
widgets (e.g., lists), while it is not customary to do it
for others (e.g., sets of radio buttons).

Primary manipulation method {point, type, drag}
– the primary way of interacting with the widget.

Widget geometry {vertical, horizontal, even} – cor-
responds to the general appearance of the widget.

We will omit here the features of container widgets (i.e.,
those used to organize other elements) because they
mostly have to do with obvious widget properties, such
as the layout and visibility of sub elements.

LEARNING THE DISSIMILARITY METRIC
We aim to find values of the parameters uk for the dis-
similarity metric that best reflect the user’s perception
of user interface similarity. We propose to do it by au-
tomatically learning these parameters by asking user
explicit binary queries (i.e., “which of the two inter-
faces looks more like the reference rendering?”). We
will learn rough estimates of these parameters by elic-
iting responses from a significant number of users in a
controlled study. This will allow Supple to behave rea-
sonably “out of the box” while still making it possible
for individual users to further refine the parameters. We
are thus looking for a computationally efficient learning
method that will allow Supple to learn from a small
number of examples and that will support efficient com-
putation of optimal or near optimal binary queries.

One very elegant approach to this problem is to treat
the parameters uk as random variables [2], whose esti-
mates are updated in response to the gathered evidence
by inference in a Bayes network. This approach makes
it very easy to encode prior knowledge and it provides
an intuitive mechanism for integrating accumulating ev-
idence. However, there is no compact way to represent
the posterior distribution using this approach so, in the-
ory, it may be necessary to keep a full log of all of user’s

feedback and re-sample the model after each new piece
of evidence is obtained. Also, it is notoriously hard to
compute optimal queries to ask of the user when rea-
soning about the expected value of the target function
(although efficient methods have been found for some
well defined domains, e.g. [3]).

Methods based on minimax regret allow the factors uk to
be specified as intervals and learning proceeds by halv-
ing these intervals on either side in response to accumu-
lated evidence. These methods are particularly attrac-
tive because computationally efficient utility elicitation
methods have been developed within this framework [1].
The main drawback of this approach is that it is not ro-
bust in the face of inconsistent feedback from the user.

An algorithm based on a standard method for training
support vector machines has been proposed for learn-
ing distance metrics from relative comparisons [7]. This
method may likely produce the best results, although an
efficient method would need to be developed for gener-
ating optimal queries so that appropriate training data
could be obtained with minimal disturbance to the user.
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