
 

Usable AI: Experience and Reflections
 

 

Introduction 
We believe that AI has much to offer HCI, in particular 
allowing for the quick construction of personalized and 
personalizable interfaces. In this position paper, we 
report on our experience from four recent 
investigations of automatic personalization. We then 
step back and comment on the overall enterprise of 
making AI usable.  

Adaptive Interfaces: Do People Want Them?  
Automatic adaptation of user interfaces is a contentious 
area. Proponents (e.g., [1]) argue that it offers the 
potential to optimize interactions for a user’s tasks and 
style while critics (e.g., [4]) maintain that the inherent 
unpredictability of adaptive interfaces may disorient the 
user, causing more harm than good. Surprisingly, 
however, there is very little past research explicitly 
studying automatic adaptation in graphical user 
interfaces. The existing research includes both positive 
and negative examples of adaptation, sometimes 
reporting contradictory results without analyzing the 
reasons underlying the discrepancy (e.g., [4] and 
[13]). 
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We have conducted four laboratory studies [5, 7, 8] 
with two distinct applications (a software graphing 
calculator and MS Word) and three very distinct 
adaptation techniques (Figure 1). We have synthesized 
our results with past research and began to outline how 
different design choices and interactions make some 
adaptive interfaces a pleasure to work with while others 
are frustrating impediments. 

In the three studies that directly compared different 
adaptive techniques, Split Interfaces (where frequently 
used functionality is copied to a specially designated 
adaptive part of the interface) were shown to result in 
significant improvement in both performance and 
satisfaction compared to the non-adaptive baseline. 
Our experiments and the analysis of past results also 
indicated that a number of specific design and context 
factors impact adoption of adaptive GUIs. Those factors 

included the accuracy and predictability of the adaptive 
algorithm, adaptation frequency, the frequency with 
which the user interacts with the interface, task 
complexity and the spatial stability of the interface 
(i.e., to what extent the original interface gets modified 
during the adaptation). 

Of particular interest here is our most recent study [8] 
where we explored the relative effects of predictability 
and accuracy in the usability of adaptive interfaces. We 
say that an adaptive algorithm is predictable if it 
follows a strategy users can easily model in their heads 
(we used a random and most recently used strategies 
to simulate the two ends of the spectrum). We use the 
term accuracy to refer to the percentage of time that 
the necessary UI elements are contained in the 
adaptive area of a Split Interface (we used 50% and 
70% accuracy levels). We found that in that particular 

 

figure 1.  Three adaptive interfaces tested in our experiments (as implemented for Microsoft Word): (a) The Split Interface copies 
frequently used functionality onto a designated adaptive toolbar; (b) The Moving Interface moves frequently used functionality from 
inside a popup menu to a top level toolbar; (c) The Visual Popout Interface makes frequently used functionality more visually 
salient. 
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design, increasing the adaptive algorithm’s accuracy 
had more beneficial effects on the participants’ 
satisfaction, performance and utilization of the adaptive 
interface than did improved predictability. These results 
suggest that there is an opportunity for machine 
learning approaches to improve both performance and 
satisfaction of people using adaptive user interfaces, 
provided those approaches can deliver significant 
performance improvements over simpler alternatives. 
The results also pose an AI challenge: algorithms 
whose behavior appears more predictable (while 
maintaining high level of predictive accuracy) will result 
in larger benefit than more opaque approaches. 

Automatically Generating Custom Interfaces for Users 
with Motor Impairments 
Users with motor impairments often find it difficult or 
impossible to use today’s common software 
applications. While many believe that the needs of 
these users are adequately addressed by specialized 
assistive technologies, these technologies, while often 
helpful, have two major shortcomings. First, they are 
often abandoned, because of their cost, complexity, 
limited availability and need for ongoing maintenance 
(it is estimated that less than 60% of the users who 
need assistive technologies actually use them [3]). 
Second, assistive technologies are designed on the 
assumption that the user interface, which was designed 
for the “average user,” is immutable, and thus users 
with motor impairments must adapt themselves to 
these interfaces.  

We developed an alternative approach: our Supple++ 
system [10] automatically generates interfaces which 
are tailored to an individual’s motor capabilities and can 
be easily adjusted to accommodate varying vision 

capabilities (Figure 2). Supple++ uses automatically 
generated custom regression models to predict users’ 
motor capabilities based on a one-time motor 
performance test and uses these models in an 
optimization process, generating personalized 
interfaces. 

 

figure 2. (a) The default interface for a print dialog. (b) A user 
interface for the print dialog automatically generated for a user 
with impaired dexterity based on a model of her actual motor 
capabilities. 
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In a study involving 11 participants with motor 
impairments and 6 able-bodied participants, which 
compared the automatically generated interfaces to the 
baselines, our results show that users with motor 
impairments were 26.4% faster using interfaces 
generated by Supple++, they made 73% fewer errors, 
strongly preferred those interfaces to the 
manufacturers’ defaults, and found them more efficient, 
easier to use, and much less physically tiring [9]. These 
findings indicate that rather than requiring some users 
with motor impairments to adapt themselves to 
software using separate assistive technologies, 
software can now adapt itself to the capabilities of its 
users thanks to a combination of AI and HCI 
innovations. 

Preference Elicitation for Interface Optimization 
Decision-theoretic optimization is becoming a popular 
tool in the user interface community, but creating 
accurate cost (or utility) functions has become a 
bottleneck — in most cases the numerous parameters 
of these functions are chosen manually, which is a 
tedious and error-prone process. Supple’s cost 
functions, for example, typically rely on more than 40 
parameters reflecting complex and interacting decision 
trade-offs. These parameters have to be chosen anew 
for each new target device and interaction style. 

We have thus built Arnauld, a system that allows users 
to quickly come up with the right parameters just by 
providing feedback about concrete outcomes [6]. 
Arnauld uses two types of interactions: system-driven 
elicitation and user-driven example critiquing. 

Users can freely switch between the two types of 
interactions. During the system-driven elicitation, 

(a)  

(b)  

figure 3. Two consecutive steps in the active elicitation process. 
(a) Arnauld poses a ceteris paribus query, showing two renderings 
of light intensity control in isolation; this user prefers to use a 
slider. (b) Realizing that the choice may impact other parts of the 
classroom controller interface, Arnauld asks the user to consider a 
concrete interface that uses combo boxes for light intensities but 
is able to show all elements at once, and an interface where 
sliders are used but different parts of the interface have to be put 
in separate tab panes in order to meet the overall size 
constraints. 
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Arnauld presents the user with a pair of outcomes, 
always starting with a pair where only one easily 
identifiable difference exists between the two 
alternatives (Figure 3a). The user is asked to express 
preference for one outcome or the other. If the 
difference causes rippling effects in the larger context, 
a follow-up query is issued illustrating those effects 
(Figure 3b). These isolated and situated queries allow 
Arnauld to identify not only absolute preferences but 
also trade-offs: for example, in the two queries shown 
in Figure 3, the user indicated that he preferred sliders 
to combo boxes but not if they caused the interface to 
grow so large that it had to be split into separate tab 
panes. 

The example critiquing interaction allows users to 
change the widget choice or layout of any part of the 
interface through direct manipulation (using the 
customization framework, in the case of Supple) – 
these interactions also provide input to the learning 
algorithm.  

The learning algorithm uses the max-margin approach 
to find a set of parameters that optimally matches the 
preferences expressed by the user through the two 
types of interactions. Related problems have been 
addressed using Support Vector Machines (requiring 
solving quadratic optimization problems) [11] and 
sampling-based algorithms [2]. Because of the 
interactivity requirements, we developed a novel very 

 

figure 4. MS Ribbon (a) a fragment of the MS Ribbon re-implemented in Supple; (b) Supple automatically provides the size 
adaptations, which are manually designed in the original version of the MS Ribbon; (c) unlike the manually designed Ribbon, the 
Supple version allows users to add, delete, copy and move functionality; in this example, New Container section was added, its 
contents copied via drag-and-drop operations from other parts of the interface and the Quick Style button was removed from the 
Drawing panel; the customized Supple version of the Ribbon can still adapt to different size constraints. 
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fast algorithm, which only requires solving of a linear 
optimization problem. 

AI Can Improve Usability: The Case of MS Ribbon 
Microsoft Ribbon is an interface innovation introduced 
in MS Office 2007 as a replacement for menus and 
toolbars. One of it’s important properties is that the 
presentation of the contents of the Ribbon can be 
adapted based on the width of the document window. 
The adaptation is performed in several ways, including 
removing text labels from buttons, re-laying out some 
of the elements and replacing sections of the Ribbon 
with pop-up windows. Figure 4a shows a fragment of 
the Ribbon re-implemented in our Supple system, while 
Figure 4b shows that same fragment adapted to fit in a 
narrower window. 

The size adaptation of MS Ribbon is not automatic – 
versions for different window widths were designed by 
hand. An unfortunate consequence of this approach is 
that no manual customization of the Ribbon is possible: 
unlike in the case of toolbars from earlier versions of 
MS Office, in Ribbon there is no mechanism to allow 
moving, copying, adding or deleting buttons, panels or 
other functionality. 

We were able to quickly re-implement the Ribbon in 
Supple. Supple’s automatic interface generation 
algorithm, which takes size as one of the input 
constraints, automatically provided the size adaptations 
(Figure 4b). More importantly, however, Supple’s built-
in customization mechanisms allow people to add new 
panels to the Supple version of the Ribbon as well as 
move, copy and delete functionality. The customized 
Ribbon can be naturally adapted to different size 
constraints by Supple (Figure 4c). In this case, 

automatically generated and adapted interactions can 
improve user’s sense of control compared to the 
manually created solution. 

Discussion Points 
Stepping back a bit, we now offer some reflections on 
the enterprise of “making AI usable.” 

Using AI 
Incorporating AI solutions in human-computer 
interaction brings about many new usability challenges. 
For example, increased complexity of an AI system’s 
behavior makes it harder for people to create adequate 
mental models of those systems. As the results our 
studies of adaptive interfaces suggest, there is a 
complex trade off between the benefit of improved 
efficiency of interaction and the increased cognitive 
complexity of the interactions. In some cases, when the 
benefits of automation are sufficiently large, those 
benefits may outweigh the costs and our results 
demonstrate the need for further research in this area. 

Further, noisy input combined with imperfect learning 
and inference may result in erroneous behavior. 
Horvitz [12] proposed a decision-theoretic framework 
for systems to automatically reason about the costs 
and benefits of potential actions based on the strength 
of the evidence motivating system’s action and an 
estimate of the actual impact the action would have on 
the user. 

Intelligence Guided by Usage 
Similarly, HCI is a source of important, interesting and 
new challenges for AI. In particular, people...  

 are a source of noisy input,  
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 have strong expectations regarding the 
predictability of the system’s behavior and the 
correctness of any “intelligent” behavior,  

 may want reliable estimates of a system’s 
confidence (if it cannot guarantee uniformly high 
accuracy),  

 often wish for an explanation underlying a 
recommendation or proposed action, and  

 are intolerant of long response times.  

 While AI researchers have delivered technologies 
that meet some of these requirements, they have made 
little progress on others; thus developing useful and 
usable systems, will require developing new AI 
approaches and algorithms. 

It is likely to be insufficient to try to add AI to an 
existing interface, or to try to design a new interface for 
an existing AI solution. Paraphrasing Dan Olsen: 
“Choosing a machine learning algorithm independent of 
the way it will be used by people is an approach 
doomed to failure.” In our own work, we found that we 
were particularly successful when we considered both 
aspects of the problem together. This allowed us to 
create useful and usable systems like Supple++, 
identify the opportunities for machine learning for 
adaptive user interfaces, and it inspired us to develop 
new AI solutions, like the very fast max-margin 
algorithm for Arnauld or a new optimization-based 
algorithm for Supple++. 

Usable HCI?  
Many AI and machine learning techniques have been 
packaged into toolkits like Weka, Mallet, the Graphical 
Models Toolkit (GMTK), Crayons, EyePatch, and others, 
allowing non-AI experts to easily apply those 

techniques when solving problems in other disciplines. 
While many problems still require substantial AI 
expertise, there are many situations where the “typical” 
application of an existing technique is sufficient; 
toolkits support those typical applications. The fact that 
many techniques originating from AI research are now 
easy to use has spurred important innovations in other 
fields, including HCI. 

It can be argued, however, that even though there are 
many situations where “typical” HCI methodologies are 
applicable, those methods haven’t been packaged or 
made accessible to non-HCI experts. For example, even 
analysis of data collected from a simple user study is 
fraught with pitfalls: timing data usually has to be log-
transformed for analysis with a t-test or ANOVA 
because these tests are only valid if data is normally 
distributed; subjective responses should be analyzed 
with a different set of (non-parametric) tests; if testing 
for multiple hypothesis at once (a very common 
situation) p-values need to be corrected to avoid 
accidentally significant results; if there are missing 
data, model-based tests may be more appropriate, and 
so on. Yet, despite the fact that many people conduct 
similar types of experiments where timing, error and 
preference data are collected, there are no common 
and easy to use tools that would help design and 
analyze such experiments. 

We suggest that increasing the usability of the basic 
HCI methodologies would give non-experts the 
necessary tools to reason about and effectively 
communicate the usability properties of inventions that 
include an interactive component — thus encouraging 
cross-pollination of the two fields. 
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