
PETALS: Improving Learning of Expert Skill
in Humanitarian Demining

Lahiru Jayatilaka
Red Lotus Technologies
lahiru@redlotustech.com

David M. Sengeh
IBM Research - Africa
DSengeh@ke.ibm.com

Charles Herrmann
Cornell University
cih5@cornell.edu

Luca Bertuccelli
Sensitech

lucab@alum.mit.edu

Dimitrios Antos
Verily Life Sciences

dimitrios.antos@gmail.com

Barbara J. Grosz
Harvard University

grosz@eecs.harvard.edu

Krzysztof Z. Gajos
Harvard University

kgajos@eecs.harvard.edu

ABSTRACT
To become proficient at landmine detection, novice deminers need
to master several kinds of skills: the proper physical operation of
the metal detector, the interpretation of the metal detector auditory
feedback, and the abstract skill of constructing and interpreting
mental representations of the “metallic signatures” produced by
the buried objects. This last skill is particularly useful for safely
dealing with mines laid out in cluster configurations, where their
metallic signatures overlap and thus a danger exists that a deminer
might either miss some of the mines or incorrectly assess their
exact positions. However, some novice deminers find it challenging
to learn how to properly reason about metallic signatures. We have
developed Petals, a system that explicitly visualizes a trainee’s
metal detector operation history on a training task as well as the
edge points of the metallic signatures that the trainee collected.
Petals enables instructors to supervise multiple trainees at a time,
to assess their performance at a glance, and to provide immediate
and specific feedback both on the correctness of their final judge-
ments about the number and positions of landmines, and on the
process through which they arrived at their conclusions. The results
of our field evaluations at the Humanitarian Demining Training
Center showed that both the instructors and the trainees found the
system a valuable addition to the training course. The results of
a controlled study demonstrated that trainees who had access to
Petals during training made significantly fewer errors (6% error
rate) on relevant tasks during the final exam (which was conducted
without Petals) than trainees who did not have access to Petals
during training (those participants had a 21% error rate).
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Figure 1: Edge points of metallic signatures of two land-
mines: an Anti-Personnel (AP) and an Anti-Vehicle (AV)
mine. Edge points, shown in blue, are the points atwhich the
metal detector goes from off to on. The APmine has a small,
round signaturewhile theAVmine has a larger, roughly box-
shaped signature.
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1 INTRODUCTION
Buried explosives have significant humanitarian, military and eco-
nomic consequences. Post-conflict landmines and explosive rem-
nants of war kill and injure civilians on a daily basis [26]. Even
worse, just the presence or the mere possibility of presence of buried
explosives causes agricultural, social and economic activities to
grind to a halt in the affected areas [3].
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While several advanced detection and neutralization technolo-
gies have been designed to increase safety and efficiency of land-
mine clearance (e.g., [7, 8, 11, 16]), these technologies have failed
to be widely adopted due to their cost, complexity, low reliability,
bulk, and high power requirements [13, 25, 43]. Instead, a human
using a metal detector (a deminer) continues to be the primary
approach for finding buried explosive threats [9, 12, 27]. Recently
introduced dual sensor detectors, which combine a metal detector
with a ground-penetrating radar (GPR), promise to be one techno-
logical intervention to find wide adoption as they are both versatile
and genuinely useful. However, because of high cost, they are still
largely inaccessible to humanitarian demining organizations.

There are two particularly complex challenges faced by deminers
searching for buried explosives with hand-held detectors. First, with
metal detectors, it is difficult to tell apart an explosive, like a land-
mine, from a harmless bullet shell or a wire. This is particularly
frustrating given the ratio of harmless to harmful items: presently,
deminers at the Landmine Relief Fund in Cambodia remove approx-
imately a hundred pieces of harmless metal for every landmine
that they find [31]. Second, it is also difficult to determine the exact
number and locations of landmines when their metallic signatures
(i.e., the areas, where the response of the metal detector is triggered,
see Figure 1) overlap with each other. This typically occurs when
mines are laid out in a cluster configuration (e.g., an anti-tank mine
surrounded by several smaller anti-personnel mines). This, clearly,
is a major safety concern.

Expert deminers have a technique for overcoming these chal-
lenges [39]: They systematically sweep the area near a potential
threat to find points where the metal detector response (auditory
beeps) starts and stops. By serially collecting these edge points, ex-
perts build a mental map of the buried object’s metallic signature.
This approach is illustrated in Figure 1. Given that an object’s metal-
lic signature is related in size and shape to the burial depth and to
the size and shape of the metallic component of the object itself,
experts reason about the geometry of these metallic signatures to
decide whether the object under investigation is a threat, to deter-
mine whether the metallic signature corresponds to one object or
several, and also to determine the object’s position in the ground.

This technique, however, proves challenging for novice dem-
iners to learn. Part of the reason for it is that the visuo-spatial skills
required for representing and reasoning about abstract spatial pat-
terns are complex in and of themselves, particularly for operators of
dual sensor detectors [39]. Another reason is that during a typical
demining training program novice deminers simultaneously learn
the basics of the metal detector operation and the metallic signature
technique. In other words, while on a practice lane, novice deminers
must allocate their attention to several novel tasks simultaneously:
controlling the height, trajectory and speed of the detector head,
monitoring and interpreting the detector’s auditory feedback, and
collecting, memorizing and interpreting edge points of metallic
signatures. Most trainees in the U.S. military eventually overcome
these challenges, but teaching this technique in the humanitarian
demining context is likely to be further hindered by the low literacy
levels of most deminers in developing countries, where deminers
are typically recruited from the local population [31]—prior re-
search has demonstrated that limited exposure to formal education
correlates with difficulties in learning abstract concepts [28].

In collaboration with the instructors at the Humanitarian Dem-
ining Training Center (HDTC) in Fort Leonard Wood, Missouri
(where most of the humanitarian demining personnel—military and
civilian—are trained in the United States), we developed Petals,
a system that visualizes both the metal detector trajectories and
the edgepoints of metallic signatures that instructors can use to
evaluate the performance of multiple trainees simultaneously and
to provide detailed and specific feedback to individual trainees im-
mediately after they complete a training activity. Petals extends
prior work that demonstrated that explicitly visualizing edge points
of metallic signatures can ultimately help novice deminers make
better decisions distinguishing buried landmines from harmless
metallic clutter [22]. Petals, in contrast, uses visualizations to help
trainees learn the skill faster so that they can apply it later in the
field without the further aid from the technology.

To evaluate this approach, we conducted a controlled study with
two HDTC instructors and 59 participants recruited from civilian
population, who were put through the basic land mine detection
course. Half of the participants had access to Petals during training
and half did not. During the final exam, which all participants com-
pleted without Petals, we measured participants’ error rates on the
cluster tasks, where the metallic signatures technique was required
for correct identification of the number and location of targets.
Participants who used Petals during training made significantly
fewer mistakes during the final exam compared to participants who
trained without Petals (6% error rate with Petals, 21% without).

In this article, we make the following contributions:

• We designed, implemented and deployed Petals, a system
that supports immediate and detailed feedback on trainee
performance by visualizing metal detector movement trajec-
tories and the edge points of metallic signatured collected
by the trainee.
• We report on field observations of two demining courses at
HDTC, in which Petals was used and iteratively redesigned.
• We conducted a controlled experiment with 59 trainees. The
results show that trainees who used Petals during training
were significantly more successful at applying the metallic
signature technique during a subsequent test than trainees
who did not have access to Petals during training.

2 BACKGROUND ON HUMANITARIAN
DEMINING

Humanitarian mine clearance procedures require the identification
and removal of all mine and other explosive hazards from a given
area to a specified depth [13]. In practice, mine clearance takes
place in environments as diverse as the deserts of Egypt, the moun-
tains of Croatia and the tropical forests of Cambodia, with most
programs operating on limited resources [26]. Given the procedural
demands and the practical realities, mine clearance technology
must be cheap, reliable and robust. Because of the difficulty of
deploying technology within these constraints, a human with a
metal detector has remained the primary method of mine clear-
ance since the 1950s [9, 12, 27]. Even though safer methods such as
machine [7, 17], robotic [30, 33] or animal clearance [6, 8, 29, 34]
are available, their use is not widespread because machines are
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expensive to maintain and are constrained by terrain, while ani-
mals are difficult to train and are practically suited only for specific
clearance scenarios [13, 17].

As of 2005, there were 48 manual mine clearance programs
worldwide [9]. In the majority of these programs, deminers were
recruited from local populations and trained over a two to four
week period [10]. The deminers work according to strict operating
procedures, which aim to preserve their safety and promote the
efficacy of the mine clearance process [10, 13]. When using a metal
detector, the primary tasks of a deminer are to carefully segment
the ground in a marked lane with a meter-long stick, cut vegeta-
tion to clear the ground for detection, sweep with a detector, and
investigate the ground carefully and methodically using a prodder
or excavator [10, 25].

The metallic signature–based method for reasoning about type
and location of buried objects was informed by research on ex-
pert deminer performance [39]. That work showed that expert
deminers systematically sweep the area near a potential threat to
find and remember edge points of the metallic signature. That is,
they systematically find and remember points where the metal de-
tector response starts and stops. These experts then refer to past
experiences to draw inferences from the spatial pattern outlined
by the edge points held in their “mind’s eye”. These behavioral
findings have been incorporated into US military deminer training
programs [4] and have been shown to improve novice performance
not only with metal detectors but also with dual sensor detectors
such as the PSS-14 described above [39]. With the PSS-14, infer-
ences made from metallic signatures are used to guide investigation
with the ground-penetrating radar.

While most trainees eventually succeed at learning the metallic
signature method, some take a long time to do so and require
disproportionate amount of attention from the instructors. In the
next section, we identify possible reasons why this method is so
challenging to learn.

3 RELATED RESEARCH
Prior training support technologies in deminer training have pri-
marily focused on improving deminer skills related to sweep-search
(exhaustive coverage of the ground surface for detector responses)
and detector feedback interpretation. The Sweep Monitoring Sys-
tem1 (SMS), for example, uses remotely mounted stereo cameras to
visually track the detector head in a simulated minefield or outdoor
training lane to provide real-time auditory and visual feedback.
Audio warnings, like “too fast” or “too slow” are provided to the
trainee deminer, while visualizations of area coverage, detector
speed and detector height are presented to the instructor. SMS is
currently in use at U.S. army training centers, deployed after forma-
tive laboratory evaluations that demonstrated that visual feedback
on sweeping performance improved the performance of demining
trainees [20]. Zhu et al.’s low-cost simulation system [46] provides
similar feedback, but it is for indoor use and training on a specific
type of detector, the AN/PSS14. To the best of our knowledge, there
is no prior work in demining training technologies for supporting
learning of the metallic signature method.

1https://www.ri.cmu.edu/robotics-area/sweep-monitoring/, Last accessed on February
15, 2018

There exist also several systems aimed at supporting deminers
in interpreting detector feedback while in the field. Kruger and
Ewald [24], for example, have developed a laboratory setup that
uses an ultrasonic positioning system and detector-mounted palm-
top computer to present detector feedback as 2D intensity-graded
regions. Researchers at Tohoku University have developed and field-
tested the Advanced Landmine Detection System (ALIS) which is an
add-on system to a metal detector [36–38]. ALIS consists of a GPR
sensing unit strapped to the operator’s back, a palmtop computer
(for computation and display) that is extended over the deminer’s
shoulder, and a camera attached to the detector handle for position-
ing. Metal detector feedback is presented as 2D intensity-graded
regions, while the GPR signal is visualized as intensity fields for
specific depths. Field evaluations have suggested that ALIS has
potential for adoption. Another system performs a sensor fusion of
metal detector and odor detector systems and visualizes the com-
bined evidence to the operator to help them distinguish between
mines and harmless metallic clutter [35]. These systems, however,
are supporting trained deminers in the field rather than at helping
deminers learn the skill in the first place.

The metallic signatures’ edge points are typically visualized us-
ing other, non-electronic, approaches. In training, edge points are
often marked with physical markers, such as poker chips. However,
such marking is physically cumbersome and is time consuming for
the operator, and thus necessitates the assistance of a trainer or
training “buddy”. This adds to training costs. Another possibility is
to use spray paint to mark the edge points. A prototype of such a
device has even been designed [42]. This approach requires a time-
consuming and more permanent modification to the metal detector.
It also lacks a mechanism to completely erase markings, which is
a concern for training facilities. In contrast, another system uses
computer vision to track the position of a metal detector head and
a digital display to visualize the geometry of the metallic signature
edge points collected by a deminer [22]. Laboratory studies demon-
strated that this approach helps novice deminers make significantly
more accurate decisions when discriminating between land mines
and harmless clutter. However, a number of pragmatic considera-
tions (feasibility of deploying overhead cameras, lack of robustness
of the electronic equipment) make the actual field deployment of
this technology unlikely. However, the evaluation of the approach
demonstrated that novice deminers could use the visualizations
produced by the system to make accurate threat assessments—even
when the visualizations were based on edge points collected by an-
other deminer—suggesting that these visualizations could augment
or substitute for the mental models deminers should be creating
when using the signature-based technique. Thus, we used this prior
work as a starting point for our solution.

In analyzing the difficulties novice deminers experience learning
the metallic signature technique, we relied on the Cognitive Load
Theory (CLT) [41]. CLT posits that learning is a process of con-
structing and memorizing schemas. Computer scientists may think
of schemas as abstractions or higher level representations of knowl-
edge. Once a schema for a particular skill has been constructed and
automated, the learner can perform a previously difficult task with
less cognitive effort. For example, a child learning to read needs to
process each letter individually and consciously combine them to

https://www.ri.cmu.edu/robotics-area/sweep-monitoring/
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form a word, while an experienced reader will effortlessly perceive
entire words or phrases.

The core premise of the CLT is that to learn, a learner must
dedicate some cognitive effort to the process of constructing and
memorizing schemas. This cognitive effort is distinct from the ef-
fort the learner needs to allocate to the instructional activity (such
as operating the metal detector) used to support learning. Instruc-
tional designs that demand that the learners allocate substantial
cognitive resources to the activity itself risk exhausting learners’
cognitive resources leaving little or no capacity for the actual learn-
ing [23, 40, 44]. Instructional designs based on the CLT aim to
minimize cognitive load related to the learning activity (the ex-
traneous load), while potentially increasing cognitive load related
directly to learning (the germane load) [41].

In the current training programs for teaching the metallic sig-
nature technique, the instructional activity (searching for buried
landmines with a metal detector) places substantial extraneous
cognitive demands on the learners: they have to allocate cognitive
resources to the proper operation of the metal detector and to the
interpretation of the metal detector feedback. This leaves trainees
with little (if any) cognitive capacity for learning concepts related
to the metallic signature method. This problem is further exacer-
bated by the low literacy levels of most deminers in developing
countries, where deminers are typically recruited from the local
population [31]—prior research has demonstrated that limited ex-
posure to formal education correlates with difficulties in learning
abstract concepts [28].

Building on prior CLT-inspired research [21], our initial approach
was to scaffold the learning activity by providing learners with a
detector-mounted display that visualized in real time the edges of
metallic signatures collected by the trainees.We expected that given
the explicit visualization, the trainees would allocate fewer cogni-
tive resources toward memorizing the locations of the edge points
and creating mental images of the metallic signatures. Through a
series of field deployments at the Humanitarian Demining Train-
ing Center, we learned that this approach was not effective: The
trainees perceived tracking of the visualizations as an additional
task rather than a means to simplify tracking of the edge points of
metallic signatures.

Our final solution takes a different approach: There is a growing
body of work in educational technology on learning systems that
provide informative visualizations to the teachers so that they can
quickly identify students who are having problems and diagnose
common misconceptions. Such tools enable teachers to provide per-
sonalized assistance even in large classrooms ultimately boosting
learning outcomes. For example, the student tracking tool [15, 32] in
the MiGen project monitors students’ activities with an exploratory
learning environment for teaching algebra. The tracking tool vi-
sualizes landmarks, which occur when the system detects specific
actions or repetitive patterns carried out by the student. OverCode
andMistakeBrowser allow instructructions in large programming
courses to identify common misconceptions among hundreds of
student-generated solutions [14, 19] facilitating provision of per-
sonalized feedback at scale. A plan recognition and visualization
system had been developed [1] to track students’ progress on tasks
performed in ChemCollective, a virtual chemistry lab. The visual-
izations produced by the system provide a static snapshot of the

(a) (b)

Detector-
mounted
display

Trigger
for marking
edge points

Figure 2: Initial design of Petals. (a) An overhead camera
(not shown) tracked the position of a patch of color fabric
attached to the metal detector head. Trainees used the trig-
ger held in the non-dominant hand to record the positions
of the edge points of metallic signatures. (b) A visualization
showing the recorded edge points overlaid on top of a real-
time image of the ground was presented in real time on a
display affixed to the metal detector shaft.

activities performed by each student: these visualizations are used
by the teachers to quickly assess success and to diagnose potential
misconceptions. While our initial focus was on supporting learn-
ers, the final design of Petals supports instructors in monitoring
performance of multiple students simultaneously and in providing
immediate, specific and personalized feedback.

4 THE INITIAL DESIGN OF PETALS SYSTEM
At first, we designed Petals to support individual trainees in an-
alyzing the geometry of the metallic signatures during hands-on
landmine detection practice. This initial design, illustrated in Fig-
ure 2, was very similar to the system used in prior work to support
novice deminers in the field [22]: an overhead camera (not shown
in the photograph) tracked the position of a patch of color fabric
attached to the metal detector head. Any time the trainee pressed
a trigger button, the current position of the metal detector head
was recorded and visualized on a screen and overlayed on top of a
real-time image of the ground (Figure 2(b)). This allowed trainees
to create visualizations of the edge points of the metallic signa-
tures of buried objects and to reason about the actual locations of
the inferred buried objects. The main difference from the previous
work was that the visualization was now presented on a mobile
device mounted onto the shaft of the metal detector instead of being
presented on a desktop computer next to the practice lane.

We expected that this design would allow trainees to offload
onto the system some of the cognitive effort associated with the
memorization and analysis of the locations of the edge points. Con-
sequently, we expected more cognitive resources to be available for
learning resulting in improved learning outcomes.

5 FIELD DEPLOYMENTS
We brought Petals three times to the Humanitarian Demining
Training Center (HDTC) in Fort Leonard Wood, MO. HDTC is the
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primary training center in the United States for both the military
and civilian deminers engaged in humanitarian landmine clear-
ance. During the first visit we demonstrated the initial prototype
of Petals to the instructors. During the two subsequent visits, re-
vised versions of Petals were incorporated into actual training.
This project did not receive any funding from the military and
the HDTC instructors were under no obligation to work with the
authors—they chose to collaborate on the field deployments be-
cause they perceived an opportunity to improve the effectiveness
of their training programs.

Metal detection training at HDTC. Metal detection training at
HDTC involves a lecture component, hands-on practice sessions
and a post-training evaluation exam. During the practice sessions,
trainees apply techniques (metallic signatures, sweep search, etc.)
taught during the lecture in order to find defused mines buried
in sand practice lanes (like those in Figure 3). The instructors use
these practice sessions to detect errors in trainee technique, to
provide feedback on performance and also to provide additional
coaching if required. The metal detection training component of an
HDTC course ends with an assessment, during which trainees have
to demonstrate that they can correctly detect and locate buried
threats.

Because trainees who enroll in the program have some prior ex-
perience in both explosives disposals and handheld detection tech-
niques, this segment of the course takes place in one day, whereas
most metal detector-based demining training programs for novices
take several. The training groups for the two field deployments of
Petals consisted of 12 (first visit) and 16 (second visit) U.S. Army
personnel with military occupational skill of Explosive Ordnance
Disposal.

The instructors incorporated Petals into the hands-on practice
sessions during both visits. They used four training lanes simul-
taneously, and they used Petals to monitor parts of two of them.
The target configurations in the four practice lanes consisted of a
single Anti-Personnel (AP) mine, a single Anti-Vehicle (AV) mine,
two side-by-side AP mines (AP+AP cluster task), and an AP mine
bordering an AV mine (AV+AP cluster task). Petals was used to
monitor an AV + AP cluster task in both the practice lanes. The
metallic signature technique is particularly important—and partic-
ularly difficult to apply correctly—for the cluster tasks because the
metallic signature of the larger AV mine substantially overlaps with
the metallic signature of the smaller AP mine.

5.1 Key Insights From the Field Deployments
Instructors needed better tools to monitor trainee performance.

Even prior to the first field deployment, instructors reported that
they were typically responsible for working with four trainees at
a time, but that they could not monitor the performance of more
than one at any given time. They requested a means to simulta-
neously observe multiple trainees. They also asked us to extend
the visualization so that it would capture not just the process of
constructing the metallic signatures, but also the trajectories of the
metal detector heads so that they could identify problems in the
trainees’ sweep search technique.

Prior to the introduction of Petals, instructors watched a trainee
for a minute or two before offering feedback. With Petals, instruc-
tors quickly fell into a pattern of occasionally coming up to the
instructor console, glancing at the visualization and making quick
assessments about how the trainees monitored by Petals were
doing. Trainers reported that a quick glance at the Petals visualiza-
tion provided them with a lot of the same information as actually
watching a trainee perform the tasks:

“the main thing, like I said, is I can walk up here [to the
instructor console] and within 2 seconds I can say, ‘he
doesn’t need anymore help’, ‘he doesn’t need anymore
help’ [pointing to trainees working on the two lanes
monitored by the system] ... or [hypothetically] ‘this
guy might need help’.”

In particular, instructors determined that Petals visualizations
were effective for quickly spotting two common problems in sweep
search technique: gapping (i.e., leaving too much space between
successive sweeps creating a danger of missing a mine, Figure 5(a))
and target lock (a situation when trainee becomes so focused on
investigating one target that they forget to sweep part of their lane,
which also creates a danger of missing a mine; Figure 5(b)).

The scaffolding mechanism was not effective. In the initial design,
trainees were provided with displays mounted on the shafts of
the metal detectors that showed the locations of the edge points
they collected overlayed on a real-time image of the ground. Most
trainees turned off the displays and reported that the displays dis-
tracted them and made the task more difficult rather than easier.

Instructors adopted PETALS visualizations as a way to commu-
nicate specific feedback to trainees. When a trainee completed a
practice lane monitored by the system, an instructor frequently
beckoned the trainee to the instructor console to discuss his per-
formance. If the trainee had done well, the instructor would use
the visual feedback for positive reinforcement with comments such
as: “good area coverage”,“nice tight loops”, “nice pattern” and “tight
sweeps”. If the visual feedback indicated weaknesses in edge point
collection or sweep search technique, the trainer discussed these
mistakes by referring to the visual feedback using comments such
as: “missing a spot over here”, “going way out there with your
loops”, “you’re gapping over there”.

After providing feedback on performance, the trainer explained
how improvements to the trainee’s technique should modify the
visual feedback. The trainer did this by referring to the trainee’s
own trace, by referring to a trace created by a peer or by retrieving
a prototype trace created earlier by the trainer himself (as in Fig-
ure 4(a)). During this process, the trainer used the visual feedback to
reinforce technical concepts related to edge point collection, sweep
search and signature geometry as necessary. Finally, depending on
the situation, the trainer physically enacted the ideal technique for
dealing with the AV + AP cluster task at the practice lane itself and,
on certain occasions, requested the trainee to repeat detection on
the task after one-on-one coaching.

Overall, instructors spent significantly more time on the lanes
monitored by Petals than the ones that were not monitored. On
certain rotations, instructors would not offer feedback to trainees
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Instructor console

Overhead camera

tracking computer
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training
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Figure 3: Deployment of Petals at HDTC. Segments of two neighboring lanes are monitored by overhead cameras. A tracking
computer is dedicated to each lane. A centrally-located instructor console displays real-time visualizations of trainee perfor-
mance from both lanes.

(a) (b) (c)

Figure 4: Final design of Petals. (a) The display can be used to present multiple visualizations simultaneously. In this photo-
graph, the left pane shows the trainee’s actual performance while the right pane shows an expert’s performance on the same
task. By contrasting the actual and the desired performance, an instructor could explain what the trainee should do differently.
(b) The instructors used portable tablets during the initial lecture to illustrate desired performance. (c) Instructors also used
the portable tablet to provide feedback to trainees immediately after a trainee completed a training task.

on the non-Petals lanes, waiting until these trainees rotated to the
Petals lanes in order to assess their skill levels and detect mistakes.

PETALS provided a way to identify problems in trainee performance
that were not apparent before. After having monitored a handful
of trainees using Petals, one of the instructors realized that a
common mistake was that trainees moved their detector head in
large and irregular motions to sample edge points, which resulted
in fuzzy signature shapes. By inspecting his own signatures and
sweep trajectories using Petals, the instructor realized that he was
making “small and tight” loops to sample edge points.

“What I noticed is that I’m quite rapid when I do this
[demonstrating building a footprint with dense and reg-
ular sampling motions].... and what the students would
do is, that they would come-in and kind of creep in on

it [the target] and then they’d overshoot and come back
[demonstrating large and irregular motions]... they’d
get confused and not figure out why they couldn’t find
the target.”

This resulted in a change in HDTC’s training program: from that
point on, including during our second field trial, during the lectures
prior to metal detection practice, the instructors explicitly demon-
strated to trainees that they needed to move their detector head in
small and tight loops to find edge points.

6 THE FINAL DESIGN OF PETALS SYSTEM
The insights from the field studies caused us to adopt a different
set of objectives and a different approach. The final design aimed
1) to support instructors in quickly assessing multiple trainees si-
multaneously on several aspects of metal detector operation; and 2)

Krzysztof Gajos
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(b)(a)

Target
lock

Gapping

Figure 5: The final design of the visualization included edge
points (white dots), current position of the detector head
(green dot), declared positions of the buried explosives (red
dots) and the trajectories of the metal detector head color
coded such that the older traces were pink and newer or-
ange. In addition to supporting feedback on metallic signa-
ture technique, this visualization allowed instructors to spot
and communicate some common problems in metal detec-
tor operation: (a) gapping (leaving too much space between
successive sweeps) and (b) target lock (failing to sweep part
of the lane after attending to a potential target).

giving instructors a means to provide specific feedback to trainees
immediately upon completion of a practice task. Providing immedi-
ate and specific feedback is a very effective pedagogical strategy,
but one that is difficult to implement in demining training because
trainees’ visual and auditory channels are fully occupied by the op-
eration of the metal detector so instructors cannot provide feedback
without interrupting trainees’ practice. Also, feedback that inter-
rupts an activity may interfere with the development of fluency in
the execution of this activity [18].

Consequently, in the final design, Petals can be used to track
the progress of multiple trainees simultaneously (Figure 3) and
instructors can monitor all of them either on a centrally-located
instructor console (Figures 3 and 4(a)) or on a portable tablet (Fig-
ures 4(b) and (c)). The visualization (Figure 5) shows the trajectory
of the metal detector head (color coded such that older movements
are purple and newer are orange), the edge points recorded by the
trainees (white dots), the locations of the mines as declared by the
trainees (red dots) and the real time location of the detector head
(green dot). The real-time view of the ground is no longer shown,
however. The display allows multiple visualizations to be shown
side by side. Instructors can either use this capability to follow
several trainees simultaneously, or to bring up a previously stored
visualization (e.g., one showing how an expert would perform a
task) for a side-by-side comparison with a visualization showing a
trainee’s work (as in Figure 4(a)).

Prior to Petals, instructors could provide direct feedback on the
correctness of trainees’ final judgements by revealing the actual
locations of the mines in relation to the poker chips dropped by
the trainees. With Petals, instructors can provide feedback on
the process by which trainees made their assessments. In most

cases, process-related feedback is more effective at supporting deep
learning than task-related feedback [2, 5, 45].

7 SUMMATIVE EVALUATION
We conducted a controlled study to test whether the presence of
the Petals system during training improved learning outcomes
on the metallic signature technique. We designed an indoor land-
mine detection training environment at one of our institution’s
indoor recreational facilitates. We co-designed this environment
with the HDTC instructors to closely mirror HDTC’s training facil-
ities. Participants received standardized metal detection training
from HDTC instructors either with or without Petals, and were
subsequently tested on evaluation lanes. All participants completed
the final test without access to Petals.

We hypothesized that compared to trainees taught with existing
methods, trainees who had access to Petals during training would
make fewer errors during a post-training evaluation exam on tasks
requiring the metallic signature technique, that is on the AV + AP
cluster tasks.

7.1 Participants
Trainees: 59 participants (36male, 22 female, 1 unspecified) recruited
from the local population (28 college students) volunteered for this
experiment. Their ages ranged from 18 to 62 (M=29). Participants re-
ceived a monetary reward of $30 for participation, and an additional
$10 based on performance during evaluation.

Instructors: Two HDTC instructors, who traveled to our institu-
tion to participate in this study, conducted training and assisted
with evaluation. The instructors had previously used Petals at
HDTC during our field deployments so they were already profi-
cient users of the system. Both trainers had five or more years of
experience in demining training. They were entirely in charge of
how to conduct the training.

7.2 Indoor landmine detection training
environment

The indoor training environment consisted of 4 training lanes and 2
evaluation lanes (Figure 6(a)). The training lanes A,B,C and D were
each approximately 2.5 m long and 1.2 m wide and contained metal-
free play sand that was 0.05 m deep. The evaluation lanes E and F
were approximately 5 m long and 1.2 m wide and contained sand at
a similar depth (Figure 6(b)). All the lanes were raised 0.2 m from
the ground to avoid any interference from metal content present in
the floor of the gymnasium. The visual feedback system used for
the experiment was unchanged from the second field visit.

7.3 Training and evaluation task design
For training, we used three types of Anti-Personnel (AP) mine sim-
ulants: large AP (ovoid metallic signature ≈ 8in diameter), medium
AP (ovoid signature ≈ 5in diameter) and the other one as small AP
(ovoid signature ≈ 3in diameter). We also used an AV mine simu-
lant, coded square AV (box-shaped signature ≈ 18in diagonal). As
illustrated in Figure 6(a), the training lanes A, B, C and D contained
two training tasks each: a single AP simulant in the first section
and a dual-mine cluster configuration (AP + AP or AV + AP).
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Figure 6: (a) Physical layout and target configurations for the training and evaluation areas for our controlled study. Cluster
tasks on the two practice lanes C and D were monitored by the system. Each target configuration in the evaluation lane was
specifically used to test certain components of trainee skill. The training area in this figure provides a good visual overview
of the training area at HDTC and how the system was physically deployed during the field trials. (b) Evaluation component
where trainees were evaluated in pairs without any visual feedback

For evaluation, we used the same targets as during training
and one additional AV simulant, coded circle AV (ovoid signature
≈ 18in diameter). The evaluation lanes E and F, identically laid out,
contained four tasks to test specific detection abilities (Figure 6(a)).
But, only two tasks (AV + AP cluster tasks) specifically required
the construction of metallic signatures and hence were the only
tasks used for testing our hypothesis. The other two tasks in the
evaluation lane were included for purposes of ecological validity:
the trainers wanted an evaluation lane that mirrored practice and
tested other aspects of trainee skill as well.

7.4 Procedure
Participants were trained and evaluated in groups of three or four.
The training segment of the experiment lasted approximately 55
minutes. The two HDTC trainers were alternatively responsible
for every two groups of trainees. Each trainer taught every other
session with Petals and the remaining sessions without. One of
the experimenters assumed the role of supporting trainer in order
to ensure that trainees were inputting edge points and using the
system correctly. The experiment concluded with an evaluation
segment that lasted approximately 30 minutes on lanes E & F with
trainees evaluated in pairs (Figure 6(b)). All participants conducted
evaluation without access to Petals.

7.4.1 Demonstration-based lecture. The experiment started with
a 15-minute demonstration-based lecture at Lane C and was sim-
ilar in content to the pre-practice lectures at HDTC. The major
differences between this lecture and a standard HDTC lecture was
the omission of different detector models and an in-depth discus-
sion about different types of mines. After teaching trainees how

to switch-on and calibrate a MineLabs F3 metal detector, the in-
structor used a medium AP mine to familiarize trainees with the
F3’s auditory feedback tones. Next, the instructor demonstrated
good sweep-search technique. The second-half of the lecture fo-
cused on the construction and interpretation of metallic signatures.
First, using the medium AP, the instructor introduced the concept
of signatures. Next, using the medium AP + circular AV task, the
instructor demonstrated and discussed metallic signatures in the
context of cluster configurations.

Trainees were also taught to verify location estimates using
tone-based techniques. With an AP mine, trainees were taught to
verify that the tone of the detector was constant over the estimated
position from all angles of detector head approach.With anAVmine,
they were taught the airborne technique. This technique involves
spiraling the detector from chest level down towards the ground
until feedback is heard. The point at which feedback is heard is
approximately above the center of the AV mine.

Because our field trials suggested that our visual feedback system
complements the instruction of technical concepts, together with
the instructors we decided to include the system in the lecture
component of this experiment. Trainees in the treatment condition
could see in real-time (Figure 4(b)), as the instructor collected edge
points and built a signature for the cluster task in Lane C. The
instructor used the resulting visual pattern to i) show trainees the
signature shapes for targets in the cluster, ii) to discuss washout
(signature distortion), iii) to reinforce the need for using “small
and tight” loops for edge point collection and iv) to explain how to
geometrically reason about signatures in order to determine target
positions.
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7.4.2 Practice. Practice, which lasted 40-minutes, commenced
with trainees randomly assigning themselves to one of the training
lanes A, B, C or D. Trainees practiced on each lane for 10 minutes
after which they rotated, in clockwise order, to practice on a neigh-
boring lane. Four rotations were implemented to ensure that all
trainees practiced exactly once on each training lane. This practice
routine was a compressed version of HDTC’s standard training
metal detection routine.

During practice, trainees detected and localized targets in the
practice lanes using the techniques taught during the lecture. When
their detectors responded to the presence of buried simulants, they
constructed metallic signatures or used tone-based techniques to
estimate target positions, and placed poker chips to record their
estimates of the positions of the centers of the mines. Practice on
a lane was completed only when a trainee had finished searching
the entire lane.

During each practice rotation, the instructor stood at the center
of the four practice lanes, and moved to individual lanes to assist
with detector calibration, to alert trainees of mistakes related to
sweep-search (sweep speed, detector height from ground etc.) and to
answer questions. When the visual feedback system was available,
the instructor used the Console to monitor trainee activity on the
cluster tasks on Lane C and D. The instructor was also provided
with the tablet that he could use when not at the central location.

Once a trainee had finished practicing on a lane, the instructor
provided feedback on performance (Figure 4(c)). If the trainee had
successfully detected all targets in the lane, the instructor explicitly
acknowledged this success. When a trainee had failed to detect a
target to the stipulated level of accuracy, the instructor provided
feedback about how to achieve the desired accuracy.When a trainee
had failed to detect the presence of a target in a cluster configuration,
the instructor asked the trainee to recheck the area more carefully.

In addition to providing feedback on performance, the instructor
sometimes conducted individual lessons to teach a trainee how to
build and interpret signatures for cluster configurations or how
to use tone-based techniques. The instructor would also revisit
sweep-search concepts and signatures on individual mines, but this
was much less common since most trainees had grasped these tech-
niques during the lecture stage. For good measure, the instructor
also frequently called out reminders to all the trainees to “check
the entire lane" and to sweep with “small and tight loops" when
building signatures.

When the visual feedback system was available, the instructor
used the visual patterns constructed by the trainees i) to suggest im-
provements in signature construction technique, ii) to reinforce the
relationship between the location of buried targets and signature
geometry, iii) to detect when trainees were guilty of gapping and
target lock. Occasionally, the instructor also used the visual traces
constructed by a trainee’s peer on the neighboring lane to further
supplement feedback and instruction. As we observed during our
field trials, the instructor also used feedback from the visual feed-
back system to help decide on the allocation of individual attention
between trainees.

7.4.3 Evaluation. Each training group was evaluated over a 30-
minute time period after a short briefing period. Trainees were
evaluated in pairs of two on Lanes E and F (Figure 6(b)). Trainees

who were not being evaluated were moved to separate location
to prevent them from overseeing the location of targets on the
exam lanes. When an evaluation was in progress, instructors inter-
vened only to assist with detector calibration. Instructors monitored
trainee chip declaration to guard against chip abuse—a situation
when a trainee scatters a lot of poker chips in the hope of “getting
lucky”.

Each pair of trainees had 15 minutes to detect all buried targets,
with auditory time warnings provided with 10, 5, 2, and 1 minutes
remaining. In order to correctly detect an AP target a poker chip had
to be placed within 3 inches (horizontally and vertically) from the
AP target’s center, and in order to correctly detect an AV simulant
a poker chip had to be placed over some part of the simulant. These
thresholds are based on the target localization accuracy required
to ensure safe neutralization when mines are discovered in the
field. In order to receive the performance bonus of $10, trainees
had to correctly detect all the targets buried in the evaluation lane
(Figure 6(a)) in the allotted time. To ensure accurate scoring, exact x
and y coordinates of each poker chip were recorded and compared
to the known positions of the buried targets.

7.5 Data Analysis
The experiment was a between-subject design with PETALS {Pro-
vided , Not Provided} as the main factor. Instructor {Instructor 1,
Instructor 2} was included in the analysis as a control variable to
guard against possible differences in instructor style and skill.

Our primary measure was a miss on the two AV + AP tasks
(Figure 6(a)). A miss was defined as either failing to declare the
presence of either of the twomines in the cluster or as exceeding the
allowed localization error threshold (see previous section). Because
miss errors on a fixed number of tasks are best modeled using
a binomial distribution, we used logistic regression (generalized
linear model with binomial distribution) to analyze the results.

7.6 Results
7.6.1 Adjustment of Data. We discarded data for 11 participants

in our analysis. Three participants were discarded as instructors
believed that these trainees had not grasped basic detection skills
during training. This exclusion was performed because HDTC train-
ing protocol would not allow these trainees to even attempt the final
exam. Two participants were discarded due to cheating (poking in
the sand to determine the true location of the targets). Finally, six
participants had to be discarded because their training group size
was smaller than 3 due to no-shows. Because instructors stated ear-
lier that group size substantially impacted their ability to accurately
diagnose problems in performance of trainees and to offer person-
alized feedback, we were concerned that participants who were
trained in groups of two might be receiving substantially different
instructions from those who were part of larger groups.

Of the 48 participants whose data were included in the analysis,
26 were trained with Petals. Participants completed 48 × 4 = 192
tasks in total during evaluation (96 on the AP + AV cluster tasks
used in the main analysis).

After adjustment of data, Instructor 1 had trained 28 participants
(15 with Petals, 13 without Petals), while Instructor 2 had trained
20 participants (11 with Petals, 9 without Petals).
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Figure 7: Error rates (misses) for our controlled study clas-
sified by type of evaluation task (Figure 6(a)) and based on
whether participants had visual feedback provided during
training. Only performance on theAV +AP cluster taskswas
relevant for testing our hypothesis, because only these two
tasks explicitly tested trainee ability to use metallic signa-
tures. Error bars show standard errors.

7.6.2 Main Results. We observed a significant main effect of
Petals on misses for the two AP + AV cluster tasks (χ2

(1,N=48)=4.88,
p = 0.027): with Petals provided during training, participants’ miss
rate on these tasks was 5.8% compared to 20.5% without (Figure 7).

7.6.3 Additional Analyses. We did not observe a significant dif-
ference on misses for the AP + AV cluster tasks based on instructor:
error rate for trainees trained by Instructor 1 was 18.5%, compared
to 24.2% for those trained by Instructor 2.

Consistent with our expectations, we did not observe significant
effects of Petals on target misses for the Small AP and Large AP +
Large AP in the evaluation lane (Figure 7).

8 DISCUSSION AND CONCLUSION
Our initial design aimed to support individual trainees by scaffold-
ing the complex task of learning how to use a metal detector to
reason about metallic signatures of buried objects. The observations
collected during the two field deployments indicated that trainees
found the visualizations created by Petals to increase rather than
decrease the cognitive demand placed on them by the learning
activity. Based on those observations, we redesigned the system
to support the instructors in the task of monitoring the perfor-
mance of multiple trainees simultaneously and providing specific
process feedback immediately upon completion of a training task
by a trainee. Upon the completion of the redesign, we hypothesized
that compared to trainees taught with existing methods, trainees
who had access to Petals during training would make fewer er-
rors during a post-training evaluation exam on tasks requiring the
metallic signature technique, that is on the AV + AP cluster tasks.

The results of the controlled study support our hypothesis: partic-
ipants who had access to Petals during training made significantly
fewer mistakes during the post-training evaluation on the AV +
AP cluster tasks, where the metallic signature technique could be
used to identify and locate multiple threats, than participants who

trained without access to Petals. It can be argued that these mis-
takes might have occurred because of incorrect application of other
techniques such as the airborne technique discussed above. But,
upon inspection of the data we found that more than 70% of the
mistakes were because trainees did not correctly locate the position
of the AP mine in the cluster. Because locating the AP is helped by
mentally visualizing the bulge in the AV’s signature, this suggests
that trainees who were trained with the visual feedback system
were more proficient with the metallic signature technique.

The lack of substantial differences between the two experimental
groups on non-cluster tasks indicates that participants in both
conditions learned the basic metal detector skills equally well. This
provides additional evidence that the differences in performance on
the cluster tasks were due to the Petals intervention rather than
systematic differences in the aptitudes of the trainees between the
two experimental conditions.

We went to great lengths to achieve a reasonable level of ecologi-
cal validity for the controlled experiment. For instance, all simulant
targets, except for the AV simulants, were acquired from HDTC’s
own training stock, and trainees used one of the most popular metal
detectors in humanitarian demining, the MineLab F3. Furthermore,
the two HDTC trainers in this experiment had conducted training
in over 30 countries and had trained hundreds of deminers. We also
worked closely with the trainers to design a training and evalua-
tion routine that was as similar as possible to the routines used in
real courses at HDTC. While the current evaluation of the system
focussed on AV and AP signature detection, in the future, field tests
and evaluation should include the addition of common harmless
metallic clutter.

The major ecological shortcoming of this experiment was the
training duration, trainee population and group size. Metal detec-
tion training at HDTC usually takes place over a day and trainees
have about three times more practice time before evaluation. With
respect to population differences, our participants had a higher av-
erage education level and much less exposure to explosive clearance
when compared to the average HDTC training class. However, the
trainers stated that in terms of learning ability and natural talent
the participants were within the spectrum of students they had
encountered over their careers.
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