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ABSTRACT
When people receive advice while making difficult decisions, they
often make better decisions in the moment and also increase their
knowledge in the process. However, such incidental learning can
only occur when people cognitively engage with the information
they receive and process this information thoughtfully. How do
people process the information and advice they receive from AI,
and do they engage with it deeply enough to enable learning? To
answer these questions, we conducted three experiments in which
individuals were asked to make nutritional decisions and received
simulated AI recommendations and explanations. In the first ex-
periment, we found that when people were presented with both a
recommendation and an explanation before making their choice,
they made better decisions than they did when they received no
such help, but they did not learn. In the second experiment, par-
ticipants first made their own choice, and only then saw a recom-
mendation and an explanation from AI; this condition also resulted
in improved decisions, but no learning. However, in our third ex-
periment, participants were presented with just an AI explanation
but no recommendation and had to arrive at their own decision.
This condition led to both more accurate decisions and learning
gains. We hypothesize that learning gains in this condition were
due to deeper engagement with explanations needed to arrive at
the decisions. This work provides some of the most direct evidence
to date that it may not be sufficient to include explanations together
with AI-generated recommendation to ensure that people engage
carefully with the AI-provided information. This work also presents
one technique that enables incidental learning and, by implication,
can help people process AI recommendations and explanations
more carefully.

CCS CONCEPTS
• Human-centered computing → Empirical studies in inter-
action design; Empirical studies in HCI.
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1 INTRODUCTION
In many areas of human enterprise, individuals increasingly rely
on Artificial Intelligence (AI) to inform their decisions and choices.
There is growing evidence that people supported by such systems
can, on average, make better decisions compared to the decisions
they would have made on their own [11, 29, 40]. However, previous
studies also showed human tendency to over-rely on AI-generated
recommendations [4, 8, 34, 66], which suggests that people may
be processing information provided by AI superficially rather than
engaging with it deeply and critically using their own knowledge
and expertise. Given continuous concerns regarding the reliability
and trustworthiness of AI, human critical engagement may be a
necessary component of successful human-AI interaction, partic-
ularly in domains with a high cost of errors, such as health and
medicine. There is already a growing body of work showing how
the interactions with AI-powered decision support systems could
be redesigned—using approaches ranging from tutorials [39] to
in-the-moment cognitive interventions [9, 54]—so as to encourage
deeper processing of the AI-generated information.

Researchers in learning sciences use the term “cognitive engage-
ment” to describe learners’ engagement with the learning process.
When people are cognitively engaged with instructional process
and materials, they are more likely to benefit from instruction and
are more likely to acquire new skills and knowledge. We propose
that cognitive engagement may be a useful construct in concep-
tualizing human engagement with AI and can help to distinguish
between passive engagement, when individuals simply follow AI
recommendations, and deeper forms of engagement, when they
critically examine these recommendations and compare them with
their own knowledge and judgement. An outcome of deeper cog-
nitive engagement would be an ability to reject information that
is inconsistent with individuals’ own knowledge and beliefs, and
to adjust their own knowledge to incorporate new information.
This type of knowledge acquisition happens not only with formal
instruction, but is also common in professional settings, when indi-
viduals interact with others in order to accomplish tasks, and use
these interactions to increase their own knowledge “about facts,
domains, history, assumptions, strategies” related to the task [6].
This type of learning is commonly referred to as accidental learn-
ing [47, 48].
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In this research, we examined the impact of different approaches
to the design of human-AI interactions on incidental learning.
Given previous research on human-AI interaction, we hypothe-
sized that simply presenting a person with a decision suggestion
and an explanation would provide an immediate benefit (i.e., help
the person make a better decision) but would not lead to learn-
ing. However, we also hypothesized that alternative forms of the
human-AI interactions—designed to elicit deeper processing of the
AI-generated information—would both provide an immediate bene-
fit and lead to incidental learning. We tested two such alternative
designs. In the first one, which we refer to as the Update design, peo-
ple first made an initial decision on their own before being shown
the AI recommendation and explanation and having a chance to
revise their decision. In the second one, the AI explanation only
design, participants were shown just an AI explanation but no ex-
plicit recommendation—they had to use the information from the
explanation to arrive at the optimal decision themselves.

We conducted three experiments in which participants had to
make a series of nutrition-related decisions (decide which of two
meals shown was a greater source of a specified macronutrient). In
each experiment, we compared one human-AI interaction to two
non-AI baselines (in one baseline condition, participants received
simple correctness feedback on their choices; in the second, they
received both correctness feedback and an explanation). In all three
experiments, the AI assistance provided significantly higher im-
mediate benefit compared to the baseline conditions where such
assistance was not present. As hypothesized, the results of the first
experiment (n=251), showed that simply presenting people with
an AI recommendation and explanation did not result in greater
learning than in the baseline design where people received no as-
sistance and no feedback. Contrary to our expectations, the results
of the second experiment (n=268), showed that the Update design
also did not result in learning. However, the results of the third
experiment (n=221 and a replication with n=300) demonstrated
that the AI explanation only design did result in learning while also
providing immediate benefit.

We hypothesize that the observed difference in learning gain
was due to the degree of cognitive engagement with AI-generated
information. When individuals were provided with a solution to
their task (in the form of a decision recommendation), they did
not need to engage deeply with the explanations and could simply
proceed with action. However, when they needed to arrive at their
own decisions, they needed to engage with the provided explana-
tions and synthesize the information to arrive at the conclusions.
These results have implications for future AI-powered systems for
supporting human decisions: contrary to common expectations,
merely providing explanations for AI recommendations may not be
enough to ensure that people critically evaluate those recommenda-
tions and arrive at final decisions that appropriately combine their
own knowledge and information contributed by the AI. Instead,
other forms of AI support that focus on presenting useful informa-
tion rather than recommendations for solutions, may elicit deeper
cognitive engagement and prompt individuals to more critically
and thoughtfully examine assistance from AI.

In this work, we make the following contributions:

• The results of our first experiment show that people who
were offered an AI-generated decision recommendation ac-
companied by an informative explanation performed better
on the task at hand compared to when no AI support was
offered, but did not learn from the AI-provided information.
Given the strong link between cognitive engagement and
learning, this is some of the most direct evidence to date
that it may not be sufficient to include explanations together
with AI-generated recommendation to ensure that people
engage carefully with the AI-provided information.

• We demonstrated that an alternative design of the human-AI
interaction, one in which the AI presents just an explanation
leaving the person to arrive at the decision, provides both an
immediate benefit in terms of decision quality and supports
incidental learning.

2 RELATEDWORK
Contrary to the initial expectations [35, 36], people supported by
AI-powered decision support systems often make less accurate de-
cisions on average than AI-powered systems on their own [4, 8, 9,
11, 29, 34, 40, 62]. This is surprising because if people combined
their own knowledge with the information provided by the decision
support systems, the resulting decisions should be more accurate
than those made by either unaided people or AI-powered systems
alone. A number of researchers investigated possible reasons for
these surprising results. There is converging evidence that people
overrely on the AI-generated recommendations [8, 34, 39, 66] and
that providing explanations for the AI recommendations might
even exacerbate the problem [4]. Recent work demonstrated that
certain kinds of in-the-moment interventions—such as forcing peo-
ple to wait before submitting a decision, having people state their
initial decision before seeing the AI recommendation, or having
the AI recommendation provided only on demand—can reduce (but
not eliminate) this overreliance [9]. It is possible that these inter-
ventions are effective because they encourage people to engage
more deeply with the AI-provided information. We examine one of
these interventions (the one where people state their initial decision
before seeing the AI recommendation) in Experiment 2.

Research in cognitive psychology suggested that people process
information on different levels. Deep processing occurs when in-
dividuals engage in more meaningful analysis of information and
link it to existing knowledge structures [2]. In learning sciences,
depth of processing is often associated with the degree of cognitive
engagement, which is described as a “psychological state in which
students put in a lot of effort to truly understand a topic and in
which students persist studying over a long period of time.” [59].

While some authors discuss cognitive engagement as a personal
trait of a student that does not depend on context [3], others sug-
gest that cognitive engagement depends on the structure of each
task [15, 30, 59]. For example, searching for information on the
Internet or engaging in discussion with other students engenders
higher levels of cognitive engagement than passively listening to a
lecture and results in higher learning gains. Rotgans and Schmidt
attributes these differences in cognitive engagement to different de-
grees of autonomy afforded by different learning tasks [59]. Chi et
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al. propose Interactive-Constructive-Active-Passive (ICAP) frame-
work to describe a continuum of learning behaviors (from passive,
to active, to constructive, to interactive) and argue that each sub-
sequent level leads to an increase in cognitive engagement and
learning [15, 16]. Further building upon the ICAP framework, Lam
and Muldner showed that engaging in collaborative constructive
activities has a positive impact on learning [41].

In this study, we build upon these investigations in learning
sciences and examine learning gains resulting from engagement
with different types of AI-generated information. Previous research
proposed a number of instruments for measuring cognitive en-
gagement directly. However, many of the instruments developed
thus far take a more longitudinal view of engagement and focus
on completion of multiple activities involved in learning (such a
rate of completion of homework, etc. as in [3]). These instruments
are ill-suited to capture variability in cognitive engagement within
each individual task. Rotgans and Schmidt [59] proposed an instru-
ment more sensitive to the degree of cognitive engagement in real
time; however, this instrument is still highly tailored to educational
settings where learning is the primary goal, rather than brief tasks
where learning is incidental. Consequently, in this study we did not
use more direct measures of cognitive engagement, and instead we
measured how much people learned.

Incidental learning typically occurs as a byproduct of other activ-
ities (e.g., problem solving, advice seeking) rather than as a result of
explicit or formal educational activities [47]. However, like formal
learning, incidental learning can only occur if people engage deeply
with information. Incidental learning is common in professional
settings [47, 48], and it can result from a wide range of professional
activities and interactions, including colleagues assisting each other
on decision-making tasks [6].

One recent project already demonstrated that people can learn
from AI-generated recommendations and explanations provided
that the explanations are carefully crafted to include relevant domain-
specific information [18]. However, that project was conducted in
the context of chess playing: participants received AI-generated rec-
ommendations and explanations on what moves to make. Because
of the unique nature of the task (people who play chess typically
are cognitively engaged in the game), it is unclear how broadly the
results of that study generalize.

More extensive research on incidental learning has been done
in an adjacent domain: navigational aids. A number of studies
(e.g., [7, 20, 52]) demonstrated that the design of the navigation
aid interface can influence both how well people can navigate in
the moment and how much they learn about the route and the
spatial configuration of the surrounding environment. While some
researchers found trade-offs between how well different designs
supported navigation and learning [52], Dey et al found an approach
that supported both [20]: They contrasted two designs that showed
participants their location on the map. In one design, participants
were also shown directional arrows telling them when and in what
direction to turn, while the other design provided no such additional
information. Both designs were equally effective at supporting
navigation, but the latter design (the onewithout directional arrows)
resulted in significantly greater learning than the one with the
arrows. Generalizing beyond the domain of navigation support,
these results suggest that individuals actively engage with and

synthesize information when they need to arrive at a decision on
their own; when the solution is presented to them as a suggestion,
they process informationmore superficially, which inhibits learning.
We build on this insight in Experiment 3.

3 EXPERIMENT 1: AI PROVIDES
RECOMMENDATIONS AND
EXPLANATIONS

The purpose of the first experiment was to evaluate whether inci-
dental learning occurs when people receive decision support from
a simple explainable AI system, one that offers a decision recom-
mendation and an explanation. We hypothesized that such a design
would improve people’s immediate task performance compared to
situations when no AI support was offered, but would not result in
learning.

3.1 Tasks and Conditions
To ensure that the results are informative, we used actual decision-
making tasks rather than proxy tasks [8]. Specifically, we adopted
the nutrition knowledge quiz (following the design of [10]), in
which participants were presented with images and descriptions of
pairs of meals and were asked which meal contained more of one
of the four macronutrients (carbohydrates, fat, protein, or fiber).
Questions were designed such that each depended on one particular
nutrition concept, such as that avocados are a significant source of
fat or that soy beans contain more protein than most other beans.

For each nutrition concept, we prepared three questions. They
were used as a pre-test, the intervention, and post-test, respectively.

The first question relating to a particular nutrition concept (the
pre-test) was used to measure the participant’s pre-existing knowl-
edge of that concept. After responding to the pre-test question,
they received only correctness feedback (“Correct” or “Not quite”).
Prior work using this task design suggests that simple correctness
feedback results in as little learning as no feedback at all [10], while
our pilot data indicated that participants preferred receiving some
feedback. Thus, providing simple correctness feedback minimized
learning from the first exposure to the concept while improving
participant experience.

The second time a participant encountered a particular concept
(the intervention), they were presented with a design corresponding
to one of the three experimental conditions (see the next section).
By comparing participants’ performance on the second exposure
to a concept (and normalizing by their performance on the pre-test;
see Section 3.4), we could estimate how much a particular design
supported participants in performing the task at hand.

The third question in each concept (the post-test) served as a
means to assess how much participants learned about the concept
from the intervention. After responding to the post-test, partici-
pants were presented both with correctness feedback and with an
explanation — this decision had no impact on the data collected
and was, instead, intended to improve participants’ experience.

The concepts were drawn at random from a larger pool, such
that each study included two concepts for each of the four macronu-
trients (for a total of 8 concepts). Concepts were randomly assigned
to conditions. The order in which questions were presented was
randomized (thus, for each participant, different questions served
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Red beans with greens Lettuce, grape tomatoes, carrots, bell peppers with 
oil and vinegar dressing

Which meal has more carbohydrates?
This one!This one!

The Meal Assistant believes this meal 
has more carbohydrates

Reason: Beans are a significant source of carbohydrates

Red beans with greens Lettuce, grape tomatoes, carrots, bell peppers with 
oil and vinegar dressing

Which meal has more carbohydrates?
This one!This one!

The Meal Assistant has some information:
Beans are a significant source of carbohydrates

Red beans with greens Lettuce, grape tomatoes, carrots, bell 
peppers with oil and vinegar dressing

Which meal has more carbohydrates?

This one!This one!

Red beans with greens Lettuce, grape tomatoes, carrots, bell peppers with 
oil and vinegar dressing

Which meal has more carbohydrates?

This one!This one!

The Meal Assistant believes this meal 
has more carbohydrates

Reason: Beans are a significant source of carbohydrates

If you want, you can change your answer or leave it as is.

Red beans with greens Lettuce, grape tomatoes, carrots, bell 
peppers with oil and vinegar dressing

Which meal has more carbohydrates?

This one!This one!

Not quite

Red beans with greens Lettuce, grape tomatoes, carrots, bell 
peppers with oil and vinegar dressing

Which meal has more carbohydrates?

This one!This one!

Not quite
Beans are a significant source of carbohydrates

Baseline 1: Minimal feedback Baseline 2: Explanation feedback

AI recommendation and explanation AI explanation only

Update

Figure 1: Experimental conditions included in the experiments. Top-left: theMinimal feedback design, a non-AI baseline condi-
tion where participants only receive correctness feedback (“Correct!” or “Not quite”) after theymake their decision. Top-right:
the Explanation feedback design, the second non-AI baseline condition, in which participants receive both correctness feed-
back and a brief explanation uponmaking their decision.Middle-left:AI recommendation and explanation design (Experiment
1)—participants see a recommendation and an explanation from a simulated AI systems, called the Meal Assistant, prior to
making their own decision. Middle-right: AI explanation only design (Experiment 3)—participants see only an explanation
(but no recommendation) from a simulated AI system before making their own decision. Bottom: Update design (Experiment
2)—participants first make their own decision and then they are shown a recommendation and explanation from the Meal
Assistant. They have the option to change their decision at this point.
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as pre-test, intervention, and post-test). Consequently, the order of
questions within each concept was randomized and the concepts
were intermixed. There were a total of 24 questions (8 concepts × 3
questions per concept).

This experiment included three conditions: two baselines and a
condition simulating a common approach to designing AI-powered
decision-support tools:

• Baseline 1, Minimal feedback. In this condition, which
is illustrated in Figure 1 (top left), participants received no
AI assistance and only minimal correctness feedback (“Cor-
rect” or “Not quite”) after they submitted their answer. As
mentioned before, in prior research this design was not sig-
nificantly different from a design where no feedback at all
was provided [10]. Thus, we consider this to be the low
baseline—it is unlikely that any other condition will result
in less learning.

• Baseline 2, Explanation feedback. In this condition, illus-
trated in Figure 1 (top right), participants again received no
AI assistance, but they received both correctness feedback
(“Correct” or “Not quite”) and a brief explanation (e.g., “Avo-
cados are a significant source of fat”) after they submitted
their response. The same explanation was provided whether
the participant answered correctly or not. In prior work,
such feedback resulted in significantly greater learning than
conditions where only correctness feedback was provided
or where no feedback was provided [10]. Thus, we consider
this to be a high baseline: while an even more effective de-
sign might be possible, it represents a demonstrably effective
solution.

• AI recommendation and explanation.This condition (Fig-
ure 1 middle left) simulated the way AI-powered decision
support systems are frequently implemented today: the AI
recommendation accompanied by an explanation was pre-
sented at the very moment the person was presented with a
decision task. To simulate real decision-making tasks where
the ground truth is unknown, no feedback was provided
to participants after they made their decision. Instead, they
were told “Your response has been recorded. (you will receive
feedback at the end of the test)”. In the study instructions,
the AI was introduced as the “Meal Assistant, which is an ex-
perimental computer system that can analyze the nutritional
content of meals.” Additionally, theywere told that “TheMeal
Assistant is right most of the time but not always. You are
welcome to consider its recommendations, but you should
make whatever decision you think is best.” This uncertainty
is typical for contemporary AI-powered decision support,
and can lead to different degrees of trust in AI-generated
information. However, given that the focus of this study was
on cognitive engagement, rather than trust, we designed our
study such that the Meal Assistant recommendations were
always correct.

The explanations presented in the Explanation feedback and in
the AI recommendation and explanation conditions were identical.
Theywere also designed to take the form of contrastive explanations.
Contrastive explanations show, for example, why a diagnosis should
be disease X instead of disease Y, where disease Y, used for contrast,

is known as the foil. When there are only two possible choices, the
foil is implicit. Contrastive explanations include only information
about what is relevant for choosing one option over the foil. There is
broad consensus that contrastive explanations are among the most
effective in human discourse [45, 51, 64]. Also, the prior work that
demonstrated that learning can occur in the context of the Nutrition
Knowledge Test also used contrastive explanations (generated by
an expert nutritionist) [10]. Finally, recent work demonstrated that
explanations that included explicit contrasts were more effective at
causing people to select healthy meal alternatives than explanations
that contained identical information about the meals but without
the explicit comparison [53].

3.2 Procedures
Participants were recruited via two mechanisms: LabintheWild.org
and Amazon Mechanical Turk (MTurk). LabintheWild is a platform
for conducting online experiments with unpaid participants [58].
Instead of being paid, participants are incentivised by the promise
that at the end of the study they will see their own results and
compare themselves to other test takers. Both curiosity and op-
portunities for social comparison have been shown to increase
engagement of online participants [32, 42] and multiple validation
studies demonstrated that data collected on LabintheWild and other
similar platforms are valid and lead to the same conclusions as data
collected in traditional laboratory settings [26, 31, 43, 44, 58]. While
some LabintheWild studies attracted tens of thousands of partic-
ipants [25, 57], experimenters have little control over the rate at
which participants arrive. Thus, we supplemented recruitment with
MTurk, which is also an effective choice collecting valid behavioral
data [37]. We paid MTurk participants $1 (US) aiming for $10/hour
(the median time to complete the study was 6 minutes).

Upon arriving at the experiment web site, all participants were
presented with brief information about the study (including a
promise to see their own results and the aggregate results of others
at the end) followed by informed consent. Next, participants were
asked if they had taken this study before and they were presented
with a demographics form (where all questions were optional).
Following [60], we offered five options for gender: male, female,
non-binary, prefer to self-describe (which enabled a free response
field), and prefer not to answer. Then, they were presented with the
instructions. Next, they completed the main nutrition knowledge
test consisting of 24 questions. After the main test, they were asked
if they had experienced any interruptions, technical difficulties, or
if they cheated in any way. Finally, they were shown their own
results, the average accuracy of other test takers, and the correct
responses (and explanations) for all the questions in the test.

LabintheWild participants were also given an option to share
the study via social media or to explore other studies hosted on
LabintheWild. Meanwhile, MTurk participants were given given a
verification code to enter back on the MTurk web site.

3.3 Approvals
This experiment (as well as the subsequent experiments reported
in this manuscript) was reviewed and approved by the Internal
Review Board at Harvard University, protocol number IRB15-2398.
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Experiment 1 Experiment 2 Experiment 3 Experiment 3 replication

n 251 268 221 270

Source LabintheWild: 217
MTurk: 34

LabintheWild: 184
MTurk: 84

LabintheWild: 36
MTurk: 185

LabintheWild: 300
MTurk: 0

Age 11–90, M=33, SD=14.4 6–75, M=33, SD=14.6 9–82, M=38, SD=12.6 11–81, M=28, SD=14.5

Gender

female: 114
male: 112
non-binary: 4
self-described: 1
not responded: 20

female: 139
male: 100
non-binary: 3
self-described: 1
not responded: 25

female: 98
male: 114
non-binary: 3
self-described: 0
not responded: 6

female: 137
male: 88
non-binary: 12
self-described: 1
not responded: 62

Table 1: Participants

3.4 Design and Analysis
This was a within-subjects experiment with three conditions (Min-
imal feedback, Explanation feedback, and AI recommendation and
explanation).

We collected two dependent measures, separately for each con-
dition:

• Immediate benefit. We quantified the improvement at the
intervention time compared to pre-test by computing nor-
malized change 𝑐 [49] (one of the measures commonly used
to measure student improvement) between the average cor-
rect rate for intervention questions and the average correct
rate for the pre-test questions:

𝑐 =


intervention − pre

1−pre if intervention > pre
intervention − pre

pre if intervention < pre
0 if intervention = pre

(1)

where “intervention” stands for the average correct response
rate during intervention trials and “pre” denotes the average
correct response rate during the pre-test trials.

• Learning. To quantify learning, we used an analogous ap-
proach to compute normalized change between the average
correct rate at the post-test and the average correct rate at
the pre-test.

Based on the results from the prior research that measured learn-
ing in the context of the Nutrition Knowledge Test [10], we pow-
ered our experiment to detect differences corresponding to Cohen’s
𝑑 ≥ 0.2. Given the within-subjects design of our experiment, this
meant a minimum of 199 participants.

Our measures were not normally distributed. Therefore, we used
a non-parametric test, Wilcoxon signed-rank test, to test for statis-
tically significant differences in our data.

We computed effect sizes using a standard approach forWilcoxon
non-parametric tests [23, 61]: 𝑟 = 𝑍√

𝑛
where 𝑍 is the test statistic

produced by the Wilcoxon signed rank test and 𝑛 is the number
of participants in the sample. The interpretation of this effect size
follows Cohen’s guidelines for 𝑟 : .5 means a large effect, .3 a medium
effect, and .1 is a small effect [17].

3.4.1 Treatment of Outliers. We removed from the analyses all
participants who indicated that they had taken the test before. Oth-
erwise, we kept all the participants. However, we did analyze our
data for extreme outliers to make sure that they did not improp-
erly affect the results. Because our primary outcome measure was
bounded (and extreme values were plausible), we used trial com-
pletion times as indicators of unusual behavior. Specifically, we
flagged all trials that took more than 1 minute to complete and we
repeated our analyses after removing all participants who had at
least one outlier trial. All the conclusions in all the experiments
still held after outliers were removed.

3.5 Results
3.5.1 Participants. 251 people participated in this experiment. Their
demographics are summarized in Table 1.

3.5.2 Main Results. The key results are visualized in Figure 2.
As hypothesized, participants demonstrated a significantly higher

immediate benefit of the intervention in the AI recommendation and
explanation condition (normalized change between intervention
and pre-test: M=0.341) than in either Explanation feedback condi-
tion (M=0.158, Z=3.55, p=0.0004, r=0.22) or the Minimal feedback
condition (M=0.167, Z=3.56, p=0.0004, r=0.22). There was no sig-
nificant difference in in terms of the immediate benefit between
the Explanation feedback and Minimal feedback conditions (Z=0.10,
n.s.).

The Explanation feedback condition resulted in significantly
larger learning gain (normalized change between post-test and
pre-test: M=0.325) than the AI recommendation and explanation con-
dition (M=0.206, Z=2.37, p=0.0179, r=0.15) or the Minimal feedback
condition (M=0.189, Z=3.14, p=0.0017, r=0.20). Consistent with our
hypothesis, there was no significant difference in learning gain
between the AI recommendation and explanation and the Minimal
feedback conditions (Z=0.68, n.s.).

4 EXPERIMENT 2: PARTICIPANTS MAKE
INITIAL DECISIONS BEFORE SEEING AI
RECOMMENDATIONS AND
EXPLANATIONS

In this experiment, we tested if people experience the benefit of
incidental learning if they first make their own decision, and only
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Figure 2: Experiment 1 results. Left: the immediate benefit per condition. Right: learning per condition. All results are reported
as mean normalized changes from the pre-test. Error bars show 95% confidence intervals.

then are presented with the AI recommendation and explanation
(and an option to revise their initial decision). We refer to this form
of human-AI interaction as the Update design. In prior work the Up-
date design resulted in more accurate decisions [22, 29] and reduced
overreliance on the AI [9] compared to the AI recommendation and
explanation design. Buçinca et al [9] hypothesized that the Update
design induces people to engage cognitively with the AI-provided
information. Thus, we hypothesized that the Update design would
result both in improved task performance and learning.

4.1 Tasks and Conditions
We used the same task design as in Experiment 1. In this experiment,
we had the following conditions:

• Baseline 1,Minimal feedback. Just like in Experiment 1.
• Baseline 2, Explanation feedback. Just like in Experiment
1.

• Update This condition is illustrated in Figure 1 (bottom)
and follows the general design used in prior research [9,
22, 29]. In this condition, participants first made a decision
on their own and only then they were presented with the
Meal Assistant recommendation and explanation. At this
point they could, but did not have to, change their answer.
The Meal Assistant recommendation and explanation was
presented regardless of whether the participant’s answer was
correct. Participants did not know onwhich tasks they would
receive the Meal Assistant recommendation after providing
their initial answer.

4.2 Procedures, Design and Analysis
The procedures, experiment design, measures, and analysis ap-
proach were the same as in Experiment 1 with one exception: im-
mediately after the main test and before asking if they experienced
any interruptions, we asked participants to fill out an abbreviated

Need for Cognition questionnaire. Following [24], we used a four-
item subset of a common 18-item instrument [13]. We elaborate
the reasons for including this measure in Section 5.4.

4.3 Results
4.3.1 Participants. 268 people participated in this experiment. Their
demographics are summarized in Table 1.

4.3.2 Main Results. The key results are visualized in Figure 3.
As hypothesized, participants experienced significantly higher

immediate benefit in the Update condition (normalized change
compared to pre-test M=0.391) compared to either the Minimal
feedback (M=0.110, Z=5.03, p<0.0001, r=0.31) or Explanation feed-
back conditions (M=0.178, Z=3.67, p=0.0002, r=0.22). As expected,
this improvement was due to participants changing their answers
in response to the Meal Assistant’s recommendations—their final
answers were significantly more correct than their initial ones
(M=0.129, Z=8.17, p<0.0001, r=0.50). There were no statistically
significant differences in terms of the immediate benefit among
the answers in the Minimal feedback condition, the Explanation
feedback condition, or the initial answers in the Update condition.

Contrary to our expectations, participants did not learn more
in the Update condition (M=0.121) than in the Minimal feedback
condition (M=0.157, Z=0.71, n.s., r=0.04). Participants learned signif-
icantly more in the Explanation feedback condition (M=0.354) than
in either Update (Z=4.59, p<0.0001, r=0.28) or Minimal feedback
(Z=3.76, p=0.0002, r=0.23) conditions.

5 EXPERIMENT 3: AI PROVIDES
EXPLANATIONS ONLY

In this experiment, we evaluated the AI explanation only design
(Figure 1middle right), in which people were presented just with the
AI-generated explanation (e.g., “Avocados are a significant source
of fat”) but no explicit decision recommendation. As discussed
in Section 2, this design was informed by the prior research on
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navigation aids, which suggested that when people are presented
with the necessary information to make a decision but not with
an explicit decision suggestion, they actively process the provided
information resulting in good performance on the task at hand and
in incidental learning [20]. Consequently, we hypothesized that
the AI explanation only design would result both in improved task
performance and learning.

5.1 Tasks and Conditions
We used the same task design as in Experiments 1 and 2. In this
experiment, we had the following conditions:

• Baseline 1,Minimal feedback. Just like in Experiments 1
and 2.

• Baseline 2,Explanation feedback. Just like in Experiments
1 and 2.

• AI explanation only. This condition is illustrated in Fig-
ure 1 (middle right). Participants were presented with an
explanation, but no recommendation as to which answer
was correct. For example, participants were told that milk is
a significant source of carbohydrates, but they had to process
this information themselves to decide which answer to select.
As in the AI recommendation and explanation and Update
conditions, participants were not provided with any feed-
back on their answers on trial during which AI assistance
was offered.

5.2 Procedures, Design and Analysis
All methods were the same as in Experiment 2 with one addition:
after we conducted and analyzed the data from the experiment, we
replicated it on an new independent sample.

5.3 Results
5.3.1 Participants. 221 people participated in the initial experiment
and 270 participated in the replication. Their demographics are
summarized in Table 1.

5.3.2 Main Results. The key results are visualized in Figure 4.
As hypothesized, participants experienced greater immediate

benefit in the AI explanation only condition (M=0.422) than in either
Minimal feedback (M=0.158, Z=4.54, p<0.0001, r=0.31) or Explana-
tion feedback (M=0.144, Z=4.84, p<0.0001, r=0.33) conditions.

Also as expected, participants learned significantly more in the
AI explanation only condition (M=0.342) than in the Minimal feed-
back condition (M=0.138, Z=3.39, p=0.0007, r=0.23). As before, par-
ticipants also learned more in the Explanation feedback condition
(M=0.320) than in theMinimal feedback condition (Z=3.28, p=0.0010,
r=0.22). There was no statistically significant difference between
Explanation feedback and AI explanation only conditions in terms
of learning (Z=0.41, n.s., r=0.03).

The results of the replication (summarized in Figure 5) supported
all of the conclusions from the initial experiment: all the significant
differences remained significant with comparable effect sizes.

5.4 Audit for Intervention Generated
Inequalities

A design intervention, even if it is helpful on average, can be
more useful to some groups than others resulting in intervention-
generated inequalities [65]. This is especially problematic if the
intervention benefits an already privileged group more than others.
An internal audit [56], which involves disagreggating the results
by relevant demographic factors, can help uncover such problems.
Given that our intervention targets the person’s motivation to exert
cognitive effort to engage with the AI-generated information, we
built on similar prior work [9] and disaggregated our results by
Need for Cognition (NFC), a stable personality trait that reflects
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how much a person enjoys engaging in effortful cognitive activi-
ties [12, 55].

For this analysis, we used the data from both the original ex-
periment and the replication. With NFC measured on a 1–5 scale,
we divided our participants into two groups of roughly equal size:
the Low NFC group (NFC ≤ 3.25; n=229) and the High NFC group
(NFC > 3.25; n=207).

The results of our audit are illustrated in Figure 6. We did not
observe statistically significant differences in learning between the
two NFC groups in theMinimal feedback condition (Wilcoxon rank
sum test Z=0.668, n.s.) or in the Explanation feedback condition
(Z=0.677, n.s.). However, in the AI explanation only condition the
High NFC group learned significantly more (M=0.388) than the Low
NFC group (M=0.255, Z=2.35, p=0.02). This result indicates that our

intervention might have disparate effects for different individuals
depending on their level of cognitive motivation.

6 DISCUSSION AND CONCLUSION
In this work, we examined how individuals engage with different
types of AI-generated assistance and the impact of AI support on
task performance and incidental learning. Specifically, we focused
on the impact of decision recommendations and explanations, two
increasingly popular components of AI-generated support with
growing availability in both professional decision support tools [5]
and personal informatics systems [19]. Previous research already
demonstrated the positive impact of explanations provided as feed-
back on the task on incidental learning [10]; as a result, we expected
that explanations would be critical to learning. Furthermore, we
were interested in examining interconnections between decision
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recommendations and explanations and their individual and com-
bined impact on incidental learning.

Our results showed that, as expected, all designs of the human-AI
interactions we have tested provided significant immediate benefit,
helping people make better decisions in those situations in which
the AI assistance was offered. These results contribute to the grow-
ing body of evidence showing that people workingwith AI-powered
decision support tools often (but not always [34, 62]) make more
accurate decisions than they would have on their own [11, 29, 40].

As hypothesized, we observed the evidence of incidental learning
in the AI explanation only condition but not in the AI recommen-
dation and explanation condition. As shown in Figure 1, in the AI
recommendation and explanation condition participants were pre-
sented with both a decision recommendation and an explanation,
whereas in the AI explanation only condition they received just
an explanation — if they wanted to benefit from it, they had to
process it carefully enough to infer which decision the explanation
supported. While prior work has highlighted the critical role of
explanations in promoting learning [10, 18], our work additionally
demonstrated the value of creating the conditions for learners to
engage constructively (as defined in the ICAP framework [15, 16])
with the explanations.

Contrary to our hypothesis, we did not observe any evidence
of learning in the Update design, as compared to the Explanation
feedback baseline. There are multiple possible explanations to this
unexpected finding. First, when comparing this condition with the
Explanation feedback baseline, it is possible that differences in the
attributed source of information between human experts (Expla-
nation feedback baseline) and AI (Update design) led participants
to place different emphasis on otherwise identical information and
engage with information provided by human experts deeper than
with information provided by an AI. It is also possible that this lack
of learning could be attributed to the framing of this information
as either direct task feedback (Explanation feedback baseline) or
as additional information for contemplation (Update design) with

people examining the task feedback more carefully than the op-
tional additional information. Furthermore, it is possible that even
though the participants were given a chance to update their deci-
sions based on additional AI-generated information in the Update
condition, they did not fully engage in the synthesis and simply
accepted or rejected the recommended answer. This would suggest
that this design did not fully reach the constructive level from the
ICAP framework [15, 16]. Although this design has been previously
shown to reduce overreliance on the AI recommendations [9], per-
haps this effect was achieved by people reflecting more deeply on
their own knowledge (and being more likely to follow their own
judgement) rather than by carefully combining the AI-provided
information with their own knowledge.

The finding that theAI explanation only design appears to benefit
people with high Need for Cognition (NFC) more than those with
low NFC adds to the growing body of evidence suggesting that
adding any form of “intellligence” to interactive systems generally
benefits high NFC individuals themost [9, 14, 24, 27]. It is a potential
source of concern because it suggests that the contemporary trends
in interactive computing may be creating disparities that had not
existed before.

A key limitation of our work is that our simulated AI (the Meal
Assistant) was always correct. This is a strength in the context of
Experiments 1 and 2 as it shows that even in the idealized conditions
the AI recommendation and explanation and Update designs did not
support incidental learning. However, further work is needed to de-
termine how sensitive the AI explanation only design is to AI errors,
and whether information on certainty of AI-recommendations can
have an impact on engagement with explanations. A complemen-
tary future direction is to examine if the AI explanation only design
helps to reduce human overreliance on theAI. Another possible limi-
tation is that our study included low-risk, inconsequential decisions
and individuals had no special expertise in nutrition and nutritional
judgment. Thus, these findings may not generalize to AI-assisted
decision making by experts in domains with more consequential
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decisions; it is plausible that in those contexts individuals may ex-
hibit deeper engagement with AI than was captured in our study.
Furthermore, we only measured immediate learning but not long-
term learning. While our results already indicate likely differences
in the level of cognitive engagement across the three experiments,
further work is needed to understand the long-term effectiveness
of incidental learning from both expert and AI explanations. Lastly,
we note that in the AI explanation only condition the visual design
emphasized the AI-generated explanations (with the green arrows
pointing to the explanation) while in the other AI conditions the
green arrows pointed to the correct answer. It is possible that by
making the explanations more salient, the visual design of the AI
explanation only condition drew participants’ attention to those
explanations more than in the other AI conditions. However, we
also note that explanations provided in the Explanation feedback
baseline robustly led to learning even though they were not visually
salient. Thus, we are confident that the impact of the visual design
in Experiment 3 was very small compared to the impact of the
overall design of that condition.

An important consideration in our work is that we used con-
trastive explanations [45, 64] and there is some evidence that the AI
explanation only design may be less effective at supporting the task
at hand when non-contrastive explanations are used [40]. As previ-
ously explained in Section 3.1, contrastive explanations answer the
question why choose X instead of Y, where Y is known as the foil.
Contrastive explanations are the dominant form of explanations in
human-human discourse. They are much briefer than explanations
that enumerate all evidence and thus make more efficient use of the
cognitive resources of the person receiving the explanation. There
is growing recognition that explainable AI systems should provide
contrastive explanations [33, 51], but this is not yet the norm. Re-
cent work has produced several methods for efficiently computing
contrastive explanations once the foil is known [1, 21, 38, 46, 50, 63].
However, there remains the challenge of identifying a good foil. In
some situations—when there are only two options to choose from
or when the person reveals their initial choice—the foil is obvious.
However, if we were to use the AI explanation only design in a
setting where many options are available (e.g., medical treatment
selection [34]) new methods are needed to predict what options
the user is likely to be considering so that the explanation provided
addresses the right contrast.

Lastly, we note that there can be a trade off between encouraging
deeper cognitive engagement and the efficiency or perceived us-
ability of the different human-AI interaction designs. While it may
be appropriate to design for deeper engagement in domains where
the cost of errors is high and human expertise is readily available,
such designs may incur higher cognitive burden and slower task
completion. Future research need to explore trade-offs between
different approaches to the design of AI-powered decision support.

Our findings have important implications for the design of AI-
powered decision support aids. First, they contribute compelling
evidence in support of the emerging concern that people do not
carefully process the AI-generated information when given a deci-
sion recommendation and an explanation [4, 9, 28]. This, in turn,
suggests an urgent need for research on fundamentally novel ap-
proaches to human-AI interaction.

Second, our results suggest one such novel approach that places
emphasis on synthesizing information necessary to arrive at de-
cisions, but leaving the actual decisions up to human users. Our
study provided strong evidence that this approach can promote
deeper cognitive engagement with AI-generated information and
can lead to higher quality decisions and learning. However, future
research should examine trade-offs between cognitive burden asso-
ciated with deeper engagement and task efficiency, whether similar
approaches would hold in higher stakes domains, and the impact
of uncertainty in the accuracy of AI-generated information on the
degree of cognitive engagement.
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