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Abstract

Today’s computer-human interfaces are typically designed with the assumption that they are going to be used by an
able-bodied person, who is using a typical set of input and output devices, who has typical perceptual and cognitive
abilities, and who is sitting in a stable, warm environment. Any deviation from these assumptions may drastically
hamper the person’s effectiveness—not because of any inherent barrier to interaction, but because of a mismatch
between the person’s effective abilities and the assumptions underlying the interface design.

We argue that automatic personalized interface generation is a feasible and scalable solution to this challenge.
We present our Supple system, which can automatically generate interfaces adapted to a person’s devices, tasks,
preferences, and abilities. In this paper we formally define interface generation as an optimization problem and
demonstrate that, despite a large solution space (of up to 1017 possible interfaces), the problem is computationally
feasible. In fact, for a particular class of cost functions, Supple produces exact solutions in under a second for most
cases, and in a little over a minute in the worst case encountered, thus enabling run-time generation of user interfaces.
We further show how several different design criteria can be expressed in the cost function, enabling different kinds
of personalization. We also demonstrate how this approach enables extensive user- and system-initiated run-time
adaptations to the interfaces after they have been generated.

Supple is not intended to replace human user interface designers—instead, it offers alternative user interfaces for
those people whose devices, tasks, preferences, and abilities are not sufficiently addressed by the hand-crafted designs.
Indeed, the results of our study show that, compared to manufacturers’ defaults, interfaces automatically generated by
Supple significantly improve speed, accuracy and satisfaction of people with motor impairments.

Key words: automatic user interface generation, optimization, adaptation, personalized user interfaces, ability-based
user interfaces, Supple

1. Introduction

Today’s computer-human interfaces are typically designed in the context of several assumptions: 1) that they are
going to be used by an able-bodied individual, 2) who is using a typical set of input and output devices, 3) who has
typical perceptual, cognitive, and motor abilities, and 4) who is sitting in a stable, warm environment. Any deviation
from these assumptions (for example, hand tremor due to aging, using a mobile device with a multi-touch screen, low
vision, or riding on a jostling bus) may drastically hamper the person’s effectiveness—not because of any inherent
barrier to interaction, but because of a mismatch between their effective abilities and the assumptions underlying the
interface design.

This diversity of needs is generally ignored at the present time. Occasionally, it is addressed in one of several
ways: manual redesign of the interface, limited customization support, or by supplying an external assistive tech-
nology. The first approach is clearly not scalable: new devices constantly enter the market, and people’s abilities
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and preferences both differ greatly and often cannot be anticipated in advance [5]. Second, today’s customization
approaches typically only support changes to the organization of tool bars and menus, and cosmetic changes to other
parts of the interface. Furthermore, even when given the opportunity, people do not customize [50, 63, 65], and even
more rarely re-customize as their work habits change [52]. Finally, assistive technologies, while they often enable
computer access for people who would otherwise not have it, also have limitations: assistive technologies can stig-
matize their users; they are impractical for people with temporary impairments caused by injuries; they do not adapt
to people whose abilities change over time; and finally, they are often abandoned, even by people who need them,
because of factors like cost, complexity, configuration, and the need for ongoing maintenance [11, 13, 42, 68].

In contrast to these approaches, we argue that interfaces should instead be personalized to better suit the particular
contexts of individual users. Many personalized interfaces are needed because of the myriad of distinct individuals,
each with his or her own abilities, tasks, preferences, devices and needs. Therefore, traditional manual interface
design and engineering will not scale to such a broad range of potential contexts and people. A different approach
is needed. In this paper, we demonstrate that automatic generation of personalized user interfaces is a feasible and
scalable solution to this challenge. We make the following specific contributions:

• We formally define interface generation as a discrete constrained optimization problem and solve it with a
branch-and-bound algorithm using constraint propagation (Sections 3 and 4). This general approach allows
our Supple system to automatically generate “optimal” user interfaces given a declarative description of an
interface, device characteristics, available widgets, and a user- and device-specific cost function.

• We develop two types of cost functions for guiding the optimization process. The first is factored in a manner
that enables preference-based personalization as well as fast computation, allowing Supple to generate user
interfaces in under 1 second in most cases (Section 5.1). The second explicitly models a person’s ability to
control the pointer, allowing Supple to generate user interfaces adapted to unusual interaction techniques or
abilities, such as an input jittery eye tracker or a user’s limited range of motion due to a motor impairment
(Section 5.2). Both types of cost functions incorporate usage traces, allowing Supple to generate interfaces that
reflect a person’s long-term usage patterns.

• We illustrate the extensibility of the approach by incorporating into the cost function a measure of presentation
consistency among different variants of a user interface. This allows Supple to generate different user interfaces
for an application such that these interfaces resemble one another, even if they are generated for different devices
(Section 5.3).

• We demonstrate two approaches for dynamic personalization of Supple-generated user interfaces: an automatic
system-driven adaptation to the current task, and a user-driven customization (Section 6).

• We systematically evaluate the systems issues in Supple and demonstrate that even for solution spaces on the
order of 1017 possibilities, our algorithm can find the optimal rendering in less than a second in most cases.
We also demonstrate that by exploring the solution space in parallel in two different orders, our algorithm’s
worst-case empirical performance can improve by up to two orders of magnitude (Section 7).

• We demonstrate a practical application of Supple: automatic generation of personalized user interfaces for
people with motor impairments. The results of our user study show that user interfaces automatically gener-
ated by Supple can improve speed and accuracy for all users—and for people with motor impairments, they
can also significantly improve satisfaction—compared to default user interfaces shipped with today’s software
(Section 8).

Automatic model-based user interface generation is frequently met with skepticism. Prior systems in this area—
which, with few exceptions, attempted to incrementally improve existing interface design processes—were perceived
to require higher up-front cost (learning a new language, manually building models) and to result in aesthetically
less-pleasing artifacts than traditional, manual design approaches [56]. Instead, we believe that the real strength
of automatic user interface generation lies not in incrementally improving existing design processes, but in enabling
solutions to problems that cannot be adequately addressed by traditional methods. Our Supple system offers alternative
user interfaces for those people whose individual devices, tasks, preferences, and abilities are not sufficiently addressed
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by the hand-crafted designs. In the case of people with motor impairments, the results of our study demonstrate that
the benefits of personalized interfaces generated by Supple far outweigh the drawbacks of unfamiliar aesthetics. And,
as Figure 33 illustrates, users with different sets of motor abilities benefit from very different user interface designs,
suggesting that manual design methods would not scale.

We have previously presented fragments and refinements of this framework over the course of several years [21,
19, 22, 23, 27, 28]. This paper provides the first complete and consistent presentation of the technical underpinnings of
the Supple system. The evaluation of the algorithm’s performance and the parallel algorithm introduced in Section 7.4
have not been presented before.

2. Previous Research

Our Supple system automatically generates concrete user interfaces from declarative models that specify what
types of information need to be exchanged between the application and the user. There have been a number of prior
systems—such as COUSIN [34], Mickey [61], ITS [87], Jade [92], HUMANOID [80], UIDE [79], GENIUS [40],
TRIDENT [83, 6], MASTERMIND [81], the “universal interaction” approach [36], XWeb [62], UIML [1], Personal
Universal Controller [57] (and the related Huddle [59] and Uniform [58] projects), UI on the Fly [71], TERESA [67],
Ubiquitous Interactor [60]—dating as far back as the 1980’s, which used the model-based approach for user inter-
face creation. The stated motivation for those prior efforts tended to address primarily two issues: simplification of
the process of user interface creation and maintenance, and providing an infrastructure to allow applications to run
on different platforms with different capabilities. In the case of earlier systems, the diversity of platforms was lim-
ited to different desktop systems, while more recent research (e.g., the “universal interaction” approach of [36], the
Ubiquitous Interactor, TERESA) addressed the challenges of using dramatically different devices, such as phones,
computers, touch screens, with very different sizes, input and output devices, and even modalities (such as graphical
and voice). The authors of several of the earlier systems (for example, COUSIN, ITS, and GENIUS) also argued
that their systems would help improve the consistency among different applications created for the same platform.
A few (e.g., ITS and XWeb) also pointed out the potential of these systems for supporting different versions of the
user interfaces adapted to the special needs of people with impairments, but none of these projects resulted in any
concrete solutions for such users. In summary, prior research was primarily motivated by the desire to improve the
existing user interface-development practice. The Huddle system was a notable exception, in that it provided auto-
matically generated user interfaces for dynamically assembled collections of connected audio-visual appliances, such
as personal home theater setups. In those systems, the available functionality depends on the selection of appliances
and the connections among them, and can change over time as the components are replaced. Thus, by automatically
generating interfaces for these often unique and evolving systems, Huddle provided novel capability that would not
have been available using existing interface-design methods. Although a similar approach was earlier proposed by the
iCrafter project [69], Huddle was the first to provide a complete implementation that included an interface-generation
capability.

The level of automation provided by the previous systems varied from providing just the appropriate program-
matic abstractions (e.g., UIML), to design tools (e.g., COUSIN), to mixed-initiative systems providing partially auto-
mated assistance to the programmer or the designer (e.g., TRIDENT, TERESA). Very few systems considered fully-
autonomous, run-time generation of user interfaces, and of those only the Personal Universal Controller [57] (and
the related Huddle and Uniform projects) resulted in a complete system while others (e.g., the “universal interaction”
approach [36] or XWeb) assumed the existence of an external interface generator.

Of those systems which provided some mechanism to automatically generate user interfaces, the majority used a
simple rule-based approach, where each type of data was matched with precisely one type of interactor that would
be used to represent it in the user interface (e.g., Mickey, ITS, GENIUS, the Ubiquitous Interactor). TRIDENT was
probably the first system to take more complex context information into account when generating user interfaces. For
example, it explicitly considered whether the range of possible values represented by a selector would be allowed
to change at run time, whether a particular number selection would be done over a continuous or discrete range, the
interaction between interface complexity and the available screen space, as well as the expected user expertise. As a
result, TRIDENT required a much more complex rule base than its predecessors—eventually the authors collected a
set of 3700 rules [82] represented as a decision tree. The Personal Universal Controller system also takes into account
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rich context but by limiting the domain of interfaces to appliance controllers it did not require as large a knowledge
base as TRIDENT.

In terms of their approach to abstractly representing user interfaces, most systems relied on a type-based declar-
ative model of the information to be exchanged through the interface, as well as on some information about how
different elements were grouped together. Often these two kinds of information were combined together into a single
hierarchical model, which in recent systems is often referred to as the Abstract User Interface (AUI) [67]. In many
cases, the interface model was specified explicitly (e.g, Personal Universal Controller, TERESA, UIML), while in
some systems it was inferred from the application code (e.g., in Mickey, HUMANOID) or from a database schema
(GENIUS). A number of the systems also included a higher-level task or dialogue model. For example, GENIUS rep-
resented interaction dynamics through the Dialogue Nets, TRIDENT relied on Activity Chaining Graphs, MASTER-
MIND modeled tasks in terms of goals and pre-conditions, while TERESA used hierarchical ConcurTaskTrees [66].

Constraints have been used as a way to define flexible layouts which provided some level of device indepen-
dence [7, 8]. In those systems, semantically meaningful spatial relationships among user interface elements could be
encoded as constraints, and—if a feasible solution existed—the constraint solver would generate an arrangement that
satisfied all the constraints.

Constrained optimization subsumes the constraint satisfaction approaches in that it produces the best result that
satisfies the constraints. Optimization-based techniques are being increasingly used for dynamically creating aspects
of information presentation and interactive systems. For example, LineDrive system [3] uses optimization to generate
driving maps that emphasize the most relevant information for any particular route. The Kandinsky system [17]
creates information visualizations that mimic the styles of several visual artists. The RIA project uses an optimization-
based approach to select what information to present to the user [93], and how to best match different pieces of
information to different modalities [94]. Optimization is also a natural technique for automatically positioning labels
in complex diagrams and visualizations [85]. Motivated by the growing use of optimization in automating parts of
the interactive systems, the GADGET toolkit [18] provides a general framework for incorporating optimization into
interactive systems, and it has been used to reproduce the LineDrive functionality and to automatically generate user
interface layouts.

Before Supple, optimization was used for graphical user interface generation by the GADGET toolkit and with
the Layout Appropriateness user interface quality metric [76]. In both cases, optimization was used to automatically
generate the user interface layout. In contrast, Supple uses a single constrained optimization procedure to generate
the layout but also to select the appropriate interactors for different user interface elements, and to divide the interface
into navigational components, such as windows, tab panes, popup windows, etc. When generating user interfaces
adapted to a person’s motor abilities, Supple also uses the same optimization procedure to find the optimal size for all
the clickable elements in the interface, thus solving a much harder problem than those attempted in prior work.

3. Representing Interfaces, Devices and Users

Like other automatic user interface generation systems, Supple relies on an interface specification (I). Addition-
ally, Supple also uses an explicit device model (D) to describe the capabilities and limitations of the platform for
which the interface is to be generated. Finally, in order to reflect individual differences among usage patterns, Supple
additionally includes a usage model, represented in terms of user traces (T ). We describe each of these components
below.

3.1. Functional Interface Specification (I)

Supple adopts a functional representation of user interfaces—that is, one that says what functionality the interface
should expose to the user instead of how to present those features. Like a number of previous systems (e.g., [1, 57, 62]),
Supple represents basic functionality in terms of types of data that need to be exchanged between the application and
the user. Semantic groupings of basic elements are expressed through container types, which also serve as reusable
abstractions. This is in contrast to several other systems that use task-oriented specification languages (e.g., [67, 81]),
which try to capture the logical activities performed with the user interface by representing not only user interface
objects, but also the dependencies among them. By specifying user interfaces at a higher level of abstraction, task-
oriented languages allow for greater flexibility in generating concrete user interfaces from any abstract specification.

4



Light Level: 
<int, [0,10]>

Power: 
bool

Light: 
    {  ,  }

Light Bank: 
   {  ,  ,  }

Light ... Light ...

A/V: 
    {  ,  }

Projector: 
    {  ,  }

Classroom:
    {  ,  ,  }

Input:
<string, {data1,data2, video}>

Vent:
<int, [0,3]>

Power: 
bool

Screen:
 bool

Figure 1: Supple uses an algorithm that makes discrete assignments of widgets to the elements of the functional interface specification. This figure
illustrates a functional specification and a sample concrete user interface for an application controlling a small set of devices in a classroom. The
solid arrows show the assignments of primitive widgets to the elements of the interface specification corresponding to the actual functionality in the
underlying application. The dashed arrows show the assignments of container widgets to the intermediate nodes in the specification; for example
the Light Bank is rendered as a tab pane while the projector was assigned a vertical layout.

For example, a hotel reservation interface can be instantiated as a step-by-step wizard for novice users or as a single
view for hotel registration staff and travel agents. We chose not to adopt this task-oriented approach for two reasons.
First, because task-oriented descriptions are typically first compiled into a data-oriented functional description [67],
our use of a functional specification does not preclude a future use with a task-oriented system. Second, task-oriented
languages are particularly useful for capturing task-oriented processes such as store checkout or making a hotel reser-
vation. Most direct manipulation systems, however, support a broad range of possible tasks and make simultaneously
available numerous reversible actions. Such interfaces would not benefit significantly from a task-oriented represen-
tation.

To illustrate our approach, the upper part of Figure 1 shows the formal specification of the interface for a simple
application for controlling lighting, ventilation, and audiovisual equipment in a classroom. Formally, an interface
is defined to be I ≡ 〈S f ,CI〉, where S f is a tree of interface elements, and CI is a set of interface constraints
specified either by the designer at design time, or by the user at run time through Supple’s customization mechanism
(Section 6.2).

The interface elements included in the functional specification correspond to units of information that need to be
conveyed via the interface between the user and the controlled appliance or application. The interface constraints
can, in principle, constrain any aspect of interface presentation. In practice, we rely on the following three classes of
constraints:

• equality constraints, which allow multiple instances of the same type (for example, all three lights in the Class-
room interface in Figure 1) to be rendered identically;

• constraints limiting the set of presentation options for an element, which allow the user, for example, to use
the customization mechanism to constrain light intensity to be rendered with a slider or to forbid the use of tab
panes at the top level of the Classroom interface;
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Figure 2: An interface utilizing images and clickable maps.

• interdependence constraints (for example, a stylistic requirement that a checkbox cannot be rendered as the sole
element inside a tab pane).

The elements in the functional specification are defined in terms of their type. There are several classes of types:
Primitive types include the common basic data types such as integers, floats, strings and booleans. As an example,

the power switches for the lights are represented as booleans in the specification of Figure 1. Primitive types also
include several more specialized constructs that often benefit from special handling by user interfaces, such as dates,
times, images and clickable maps. These last two types are illustrated in a concrete interface for an interactive map
application shown in Figure 2, where a person can point at different offices on a building map, causing the occupant’s
image to be displayed in the panel on the right-hand side. Some primitive types can be further described with a small
number of attributes. For example, information about the expected length of input can be added to instances of string
type.

Container types, formally represented as {τ1, τ2, . . . , τn}, are used to create groups (or records) of simpler ele-
ments, τi. For example, all of the interior nodes (e.g., Classroom, Light Bank, Light, etc.) in the specification tree
in Figure 1 are instances of the container type. The container types serve two functions. First, they provide Supple
with information as to what pieces of functionality belong together semantically. Secondly, they provide reusable
abstractions: as with all Supple types, a container type can be specified once and later instantiated in multiple parts of
the interface.

Constrained types: 〈τ,Cτ〉 denotes a constrained type, where τ is any primitive or container type and Cτ is a
set of constraints over the values of this type. In the classroom example, the light level is defined as an integer
type whose values are constrained to lie between 0 and 10. In the email client shown in Figure 3a, the list of email
folders shown on the left is represented as a string whose values are constrained to be the names of the folders in the
currently selected email account. Constraints can also be specified for container types. For example, consider the list
of available email accounts in the email example of Figure 3b. Each account is modeled as an instance of the container
type. Yet the user wants not only to see the settings of a single account, but also wants to select different accounts to
view. Thus, the interface element representing the current account is modeled as a container object whose domain of
values is restricted to registered email accounts for that user. When Supple renders this container, it allows the user to
select which account to view, and also displays that account’s settings. When enough screen space is available, Supple
will render both the selection mechanism and the details of the content side-by-side, as in Figure 3b. When space is
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(a) (b)

Figure 3: An email client that uses Supple to render its user interface. (a) The main view. (b) The configuration pane.

scarce, Supple will show just the list of available accounts; in order to view their contents, the user must double-click
on an element in the list, or click the explicit “Details” button.

The constraints can be of any type, but typically they are expressed as an enumeration of allowed values or as a
range. Further, the constraints on the legal values of an element are allowed to change dynamically at run time—for
example, the list of folders from which to select will change when folders are created or deleted. Additional relevant
attributes can be specified in a definition of a constrained type, such as whether the constraint can change at run time
or not, or what the expected size of the domain of possible choices is.

The elements of the constrained type are often rendered with discrete selection widgets such as lists, radio buttons,
or combo boxes. But they can also be rendered as sliders for continuous number ranges where precise selection is not
required, or even as validated edit boxes.

A number of previous interface description languages, such as those used in the Personal Universal Controller [57]
or TERESA [67] projects, explicitly distinguish between types that can be manipulated with selection versus text
editing operations. However, in some situations, both interactions may be appropriate. For example, selecting a
number from a small range can be represented as a list (selection) or as a validated input (edit). With the constrained
types, Supple avoids making this commitment.

Subtyping. While the above approach makes modeling easy, it assumes that for constrained container types, all
the possible values allowed by the constraint are of the same type. In practice, this is not always the case. For example,
consider the interface to Amazon Web Services in Figure 4. Items returned by search may come from any of several
categories, each of which can have different attributes. Books, for example, have titles and authors, while many other
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Figure 4: A simple client for Amazon Web Services. (a) Search results with a pane showing properties of a selected object. Only those properties
which are common to all items are shown there, but the “More Details” button brings up a specialized view for each item. (b) Detailed view for a
book. (c) Detailed view for a digital camera.

items do not. To alleviate this problem, Supple allows the elements of a container of type τ to be a subtype2 τ′ of τ.
The Amazon Web Services example in Figure 4 illustrates one way subtypes can be rendered in a concrete graphical
user interface: if space permits, Supple renders all the attributes of the common ancestor type τ statically, next to
the choice element (Figure 4a). Any time a specialized object is selected by the user, another button is highlighted,
alerting the user that more detailed information is available, which can be displayed in a separate window as shown in
Figures 4b and 4c.

Vectors: elements of type vector(〈τ,Cτ〉) denote an ordered sequence of zero or more values of type τ and are
used to support multiple selection. Like in the constrained types, the constraints Cτ define the set of values of type
τ that can be selected. For example, the list of emails in the email client (Figure 3a) is represented as a vector of
Message elements, whose values are constrained to the messages in the currently selected folder; this allows the user
to select and move or delete several messages at once.

Actions are denoted with a functional type signature, τ1 7→ τ2, where τ1 stands for the type of the object containing
parameters of the action and τ2 describes the return type, that is, the interface component that is to be displayed after
the typical execution of the action. Unlike the other types which are used to represent an application’s state, the action
type is used to invoke an application’s methods. For example, the Login button in the FTP Client Login interface
(Figure 5a) is represented as an action. Its parameter is a container holding the User, Password, and Host elements,

2A subtype of a container type is created by adding zero or more new elements; the subtype cannot rename, remove, or change the type of
elements defined in its parent type.
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(a) (b)

Figure 5: This simple FTP client UI illustrates the Action type in Supple’s functional specification.

while its output is the container type describing the FTP Client interface (Figure 5b), which appears after the successful
execution of a login action.

The parameters and the return type of an action type can be null if the action has no parameters or causes no new
interface elements to be created. For example, the New action in the Email client (Figure 3a) has null parameter type,
and the Search action in the Amazon Web Services client (Figure 4a) has null return type because it only alters the
contents of the existing Search Results part of the existing interface.

3.2. Device Capabilities and Constraints (D)
We model a display-based device as a tuple:

D ≡ 〈W,CD〉

where W is the set of available user interface widgets on that device and CD denotes a set of device-specific con-
straints.

Widgets are objects that can turn elements from the functional specification into components of a rendered inter-
face. There are two disjoint classes of widgets: W =Wp ∪Wc. Those inWp can render primitive types, and those
inWc are containers providing aggregation capabilities (i.e. layout panels, tab panes, etc.).

Like the interface constraints, the device-specific constraints in CD are simply functions that map a full or partial
set of element-widget assignments to either true or false. For example, a constraint is used to check whether the
interface exceeds the available screen size.

Common widget toolkits are often a poor fit for unusual interactions (e.g., trying to control a mouse cursor with
a laser pointer) or abilities (e.g., for people with impaired dexterity or low vision). To accommodate such unusual
interactions and abilities, we extended one standard widget toolkit in two ways: by adding new widgets and by
parametrizing each widget with two continuous parameters, the minimum target size, st, and the minimum visual
cue size, sc. The minimum target size parameter—used only on devices that support 2D pointer control—constrains
the minimum size of any widget component that can be controlled with a pointer. Examples include a button, a list
element, or a slider, as illustrated in the left pane of Figure 6. The minimum visual cue size constrains the size of
important visual cues, such as fonts and icons (the right pane of Figure 6).

The new widgets (see Figure 7), which provide alternatives to a checkbox, a set of radio buttons, and a spinner,
expand Supple’s options when generating user interfaces for touch-based interactions and for situations where users’
dexterity is impaired due to context of use or due to a health condition.

3.3. Modeling Users with Traces (T )
Most people use only a small subset of functions available in any application, and different users use different

subsets [29, 44]. To adapt to a person’s tasks and long-term usage patterns, the user interface should be rendered such
that important functionality is easy to manipulate and to navigate to. Instead of relying on explicit annotations by the
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Figure 6: Presentation of a list widget and a checkbox widget for different values of (left) the minimum target size st , and (right) the minimum
visual cue size sc parameters.

Figure 7: We have extended a standard widget toolkit with three additional widgets, to use as alternatives to (left) a checkbox, (center) a set of radio
buttons, and (right) a spinner.

designer or the user, Supple relies on usage traces, which can correspond either to actual or anticipated usage. Usage
traces provide not just interaction frequency for primitive widgets, but also frequencies of transitions among different
interface elements. In the context of the optimization framework, traces offer the possibility of computing expected
cost with respect to anticipated use.

A usage trace, T , is a set of trails where, following [86], the term trail refers to “coherent” sequences of elements
manipulated by the user (i.e., the abstract elements from the interface description and not the widgets used for render-
ing). We assume that a trail ends when the interface is closed or otherwise reset. We define a trail T as a sequence
of events, ui, each of which is a tuple 〈ei, voldi , vnewi〉. Here ei is the interface element manipulated, and voldi and vnewi

refer to the old and new values this element assumed (if appropriate). It is further assumed that u0 = 〈root,−,−〉,
where root stands for the root element in the functional specification tree.

Because the format of a trace is independent of a particular rendering, the information gathered on one device can
be used to create a custom rendering when the user chooses to access the application from a different device. Note
that in some cases, use of different devices may be correlated with different contexts of use (for example, a person
may mix and organize music on a desktop computer, but primarily use the playback functionality while traveling with
a mobile device), which is why the sharing of usage traces across platforms is optional.

Of course, an interface needs to be rendered even before the user has a chance to use it and generate any traces.
A simple smoothing technique will enable the system to work correctly with empty or sparse user traces. Also, the
designer of the interface may provide one or more “typical” user traces. In fact, if several different traces are provided,
the user may be offered a choice as to what kind of usage pattern they are most likely to engage in and thus have the
interface rendered in a way that best reflects their needs.

Finally, while it may be conceptually helpful to think of modeling users in terms of actual traces, those traces can
grow arbitrarily large. Therefore, in Section 5 we will show that Supple only needs to maintain concise summary
statistics to adapt to a particular pattern of usage.

10



4. Interface Generation as Optimization

The goal is to render each interface element with a concrete widget, as illustrated earlier in Figure 1. Thus a legal
rendering of a functional specification S f is defined to be a mapping R : S f 7→ W which satisfies the interface and
device constraints in CI and CD. Of course, there may be many legal renderings. Therefore, in order to find the best
one, Supple relies on a cost function $ : R 7→ R≥0, which provides a quantitative metric of the user interface quality.
The cost function can correspond to any measure of quality of a user interface, such as consistency with the user’s
stated preferences (Section 5.1) or expected speed of use (Section 5.2). It can also incorporate additional concerns,
such as similarity to previously seen renderings of a user interface, even if those renderings were generated for other
devices (Section 5.3).

We thus formally define the interface rendering problem as a tuple 〈I,D,T , $〉, where I ≡ 〈S f ,CI〉 abstractly
describes the interface in terms of the functional specification and the interface constraints,D ≡ 〈W,CD〉 is a device
model specifying available widgets and device constraints, T is the usage trace, and $ is the cost function. R is a
solution to a rendering problem if R is a legal rendering with minimum cost—we thus cast interface generation as
constrained optimization, where the goal is to find a concrete user interface that minimizes the expected value of the
cost function with respect to the usage trace, subject to the interface and device constraints. As stated, this is a hard
discrete/continuous hybrid problem becauseW contains different classes of widgets, each of which is parametrized
with several real parameters, such as minimum target size st, minimum visual cue size sc, and additional widget-
specific parameters, for example, the length of a list widget for showing search results in the Amazon search interface
(Figure 4), can vary reasonably from a handful up to 40 entries.

Regardless of the particular cost function used, the cost of the best user interface is not likely to be a monotonic
or even a continuous function of the minimum target size st or the minimum visual cue size sc. This is because of
the screen size constraint: as larger and larger widget sizes are used in response to changes to st or sc, the available
amount of screen space will eventually be exceeded, making it necessary to use more compact widgets (e.g., a combo
box instead of a list) or different navigation strategies (e.g., tab panes instead of a side-by-side layout). For this
reason, one cannot apply any of the efficient convex optimization techniques. Instead, it is necessary to search the
space exhaustively. Fortunately, the specter of continuous optimization is only an illusion because in practice only
integer sizes are used. Furthermore, one may approximate matters by discretizing the space even more coarsely—for
example, at 5 pixel intervals—yielding 21 discrete settings (in the range between 0 and 100) for the size parameter.
This allows us to cast the problem as constrained discrete optimization.

Conceptually, Supple enumerates all possible interfaces for a particular application and chooses the one which
minimizes the user’s expected cost of interaction. To find a globally optimal solution, we use an algorithm that
combines branch-and-bound search [47, 55] with constraint satisfaction techniques. This algorithm is illustrated at a
high level in Table 1, where the variables correspond to the elements in the functional specification S f , their possible
values are drawn from the set of available widgetsW, and the constraints include both interface and device constraints
(i.e., CI and CD). Efficiency of this algorithm is affected by several design choices:

• the admissible heuristic (the estimatedSolutionCost function on line 2), which helps prune provably suboptimal
solutions,

• the constraint propagation strategy (the propagateConstraints function on line 1), which helps eliminate prov-
ably illegal solutions,

• the variable and value ordering heuristics (the selectUnassignedVariable function on line 7, and the orderValues
function on line 8).

We discuss these choices in turn.

4.1. The Admissible Heuristic
At each step of the search process, an admissible heuristic provides a lower bound on the cost of the best solution

given the partial choices made so far. The closer the heuristic approximates the cost of the actual best solution
reachable from a given point in the search process, the more effective it is at pruning sub-optimal solutions and,
hence, the faster the algorithm. The form of the admissible heuristic depends on the form of the cost function. In the
next section, we derive two cost functions and corresponding admissible heuristics.
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bestCost← ∞
bestRendition← null

function optimumSearch(variables, constraints)
1. if propagateConstraints(variables, constraints) = fail

return
2. if estimatedSolutionCost(variables) ≥ bestCost

return
3. if completeAssignment(variables) do
4. bestCost← cost
5. bestRendition← variables
6. return
7. var← selectUnassignedVariable(variables)
8. for each value in orderValues(getValues(var))
9. setValue(var, value)
10. optimumSearch(variables, constraints)
11. restoreDomain(var)
12. undoPropagateConstraints(variables)
13. return

Table 1: An algorithm combining branch-and-bound discrete optimization and constraint satisfaction mechanisms. The variables correspond to the
elements in the functional specification S f , their possible values are drawn from the set of available widgetsW, and the constraints include both
interface and device constraints (i.e., CI and CD). The solution is stored in bestRendition.

4.2. Constraint Propagation

We have further optimized the algorithm by implementing full constraint propagation for size constraints at each
step of the search. The constraint propagation ensures that after each variable assignment, the potential widgets
considered for unassigned variables are consistent with all size constraints. This allows the algorithm to more quickly
detect paths that will not yield a legal solution. Furthermore, it allows the admissible heuristics to make more accurate
estimates of the final cost of the complete interface allowing for more efficient branch-and-bound pruning.

In general, full constraint propagation requires time that is quadratic in the number of variables [73]. Note,
however, that widget size constraints form a tree structure that mirrors the hierarchy of the functional specification.
Exploiting this, Supple performs full propagation of size constraints in linear time. The other types of constraints
can form a potentially arbitrary network and Supple uses a one-step forward checking procedure (i.e., propagation
of constraints only to the immediate neighbors) for those constraints. The evaluation of the system’s performance
(Section 7.4) shows that these optimizations are indeed very effective.

4.3. Variable Ordering

The search is directed by the variable ordering scheme encoded in the selectUnassignedVariable subroutine. Be-
cause all variables are eventually considered, the order in which they are processed does not affect completeness.
But, as researchers in constraint satisfaction have demonstrated, the order can have a significant impact on solution
time. We have experimented with three variable ordering heuristics: bottom-up first chooses the leaf variables in the
interface specification tree (Figure 1), which leads to construction of the interface starting with the most basic ele-
ments, which then get arranged into more and more complex structures. Top-down chooses the top-most unassigned
variable; this causes the algorithm to first decide on the general layout and only then populate it with basic widgets.
The final heuristic, minimum remaining values (MRV), has proven highly effective in many constraint satisfaction
problems [73]; the idea is always to focus on the most constrained variable, that is, the one with the fewest possible
values remaining.
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4.4. Value Ordering
Ordering of values for each variable is done in a greedy manner, with those with minimum marginal cost being

tried first. While other approaches are common in solving constraint satisfaction problems, we are concerned with
finding the best possible interface. In practice, when the problem is under-constrained, this leads to efficient selection
of the best solution while in over-constrained cases, the constraint propagation procedure efficiently eliminates low-
cost but large widgets from among the possible values.

5. Formulating the Cost Function

The style and quality of user interfaces generated by Supple is determined by the cost function, which provides
a quantitative metric of user interface quality. In this section, we develop two different cost functions. The first is
factored in a manner that enables fast computation of an admissible heuristic. This cost function is also parametrized
in such a way that different choices of parameters can result in different styles of user interfaces generated. Subse-
quent work [28] demonstrates a preference elicitation approach that allows this cost function formulation to capture
a user’s subjective preferences regarding how his or her user interfaces should be generated. The second cost func-
tion (Section 5.2) reflects the expected time a person would need to perform a typical set of tasks with a particular
user interface. This cost function can capture a person’s objective motor abilities [27] and allows user interfaces to
be directly optimized for speed of use. The last part of this section describes an extension that enables a notion of
presentation consistency to be included as one of the terms in the cost function.

5.1. Factorization for Efficient Computation and Personalization
To develop a cost function that supports fast performance of the optimization algorithm as well as personalization,

we start with three design requirements:

1. As discussed in Section 3.3, to enable generating user interfaces adapted to a person’s usage patterns, the cost
function should take into account information from usage traces, so as to provide an estimate of the expected
cost with respect to the actual or anticipated usage. This is an effective mechanism for allowing some parts of an
interface to be considered more “important” than others without forcing the designer to embed such information
in the functional specification itself.

2. To enable the efficient computation of the admissible heuristic on which the optimization algorithm relies (Ta-
ble 1, line 2), we require that the cost function be factorable as a sum of costs over all elements in the functional
specification. That way, the cost of already assigned variables can be computed exactly, and for the remaining
variables, the cost of the best feasible widget (i.e., one with smallest cost and which has not been pruned by
constraint propagation) is used.

3. To support personalization, the cost function should be parametrized in such a way that the appropriate choice of
parameters can result in different styles of user interfaces being favored over others.

We start by defining $ to be of the form:

$(R(S f ),T ) ≡
∑

T ∈T

|T |−1∑
i=1

(N(R, ei−1, ei) +M(R(ei))) (1)

where N is an estimate of the effort of navigating between widgets corresponding to the subsequent interface elements,
ek ∈ S f , referenced in a trail, T , andM is a manipulation cost function that measures how good each widget is for
manipulating state variables of a given type. Hence, the cost of a rendering is the sum of the costs of each user
operation recorded in the trace.

Equation 1 satisfies the first of the three requirements, but requires re-analyzing the entire user trace each time a
new cost estimate is necessary, and it fails to satisfy the remaining two requirements.

To address those limitations, we first define N : {sw, lv, ent} × Wc 7→ < to be a function, specific to container
widgets, that reflects the cost associated with navigating through a rendered interface. In particular, there are three
ways (denoted sw, lv, and ent) in which users can transition through container widgets (Figure 8). If we consider a
container widget w representing an interface element e, the three transitions are: entering (ent), when a descendant
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Light Level: 
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Power: 
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Light: 
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entering (en) switching (sw) leaving (lv)

(en)

(sw)

(lv)

Figure 8: Three types of transitions between elements of a user interface illustrated with respect to the A/V interior node: entering (ent), when a
descendant of A/V node is manipulated following an element that is not its descendant; sibling switching (sw), when user manipulates two different
descendants of the A/V node; and leaving (lv), when a user manipulates a descendant of A/V and then navigates to an element outside of the A/V
sub-tree.

of e is manipulated following an element that is not its descendant; sibling switching (sw), when user manipulates
two elements that belong to two different descendants of e; and leaving (lv), when a user manipulates a descendant
of e and then navigates to an element outside of the e sub-tree. For different types of container widgets, these three
transitions are predicted to increase user effort in different ways. For example, suppose that e is rendered with a tab
pane widget. Then N(sw, e), which denotes the cost of switching between its children, would be high, because this
maneuver always requires clicking on a tab pane. Leaving a tab widget requires no extra interactions with the tab.
Entering a tab pane usually requires extra effort, unless the tab that the user is about to access has been previously
selected. In the case of a pop-up window, both entering and leaving require extra effort (click required to pop up the
window on entry, another click required to dismiss it) but no extra effort is required for switching between children if
they are rendered side-by-side.

Recall that our interface specification is a hierarchy of interface elements. Assuming a rendition where no shortcuts
are inserted between sibling branches in the tree describing the interface, one can unambiguously determine the
path between any two elements in the interface. We denote the path between elements ei and e j to be p(ei, e j) ≡
〈ei, ek1 , ek2 , . . . , ekn , e j〉. We thus choose the navigation cost function, N, from Equation 1 to be of the form:

N(R, ei−1, ei) =

|p(ei−1,ei)|−2∑
k=1


N(sw,R(ek)) if child(ek, ek−1)

∧ child(ek, ek+1)
N(lv,R(ek)) if child(ek, ek−1)

∧ child(ek+1, ek)
N(ent,R(ek)) if child(ek−1, ek)

(2)

where child(ek, ek−1) is true if ek−1 is a child of ek. This formula iterates over the intermediate elements in the path,
distinguishing among the three kinds of transitions described in the previous section. If both ek−1 and ek+1 are children
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of ek, then it is considered to be a sibling switch between the children of ek. If ek−1 is a grandchild of ek+1, then the path
is moving up the interface description hierarchy, and so it leaves ek. Finally, if the path is moving down the hierarchy,
then it is entering ek.

The cost of navigation thus defined, it is easy to see that the total navigation-related part of the cost function is de-
pendent on how many times individual interface elements are found to be on the path during the interactions recorded
in the user trace. We thus define appropriate count functions: #sw(T , e), #ent(T , e) and #lv(T , e). Smoothing towards
the uniform distribution (by adding a constant to each count) ensures that Supple avoids the pathological situations
where some of the weights are 0.

Therefore, we may state the component cost of an interface element, R(e), as:

$(R(e),T ) = #sw(T , e) × N(sw,R(e))
+ #ent(T , e) × N(ent,R(e))
+ #lv(T , e) × N(lv,R(e))
+ #(T , e) ×M(R(e))

(3)

The total cost of the rendering can be thus reformulated in terms of the component elements as

$(R(S f ),T ) =
∑

e∈S f

$(R(e),T ) (4)

This cost can now be computed incrementally, element-by-element, as the rendering is constructed. Hence, this
formulation of the cost function now satisfies the first two requirements listed at the beginning of this section: it
incorporates usage traces to emphasize some parts of the user interface over others, and it allows for incremental
computation.

To address the third requirement, we introduce factor functions f :W×T 7→ <. These functions, which take an
assignment of a widget to a specification element and a usage trace as inputs, reflect the presence, absence or intensity
of some property of the assigned widget. Because they take the usage trace as an input, they also reflect the expected
importance of the underlying element. For example, the following factor

f slider for number(R(e),T ) = #(T , e) ×


1 if type of e = number

∧R(e) = slider
0 otherwise

(5)

will return the usage count for the element if it is of number type and is represented by a slider widget. In all other
cases, it will return 0. The following equation illustrates a more complex example:

f list undersize(R(e),T ) =

#(T , e) ×


number of choices

list size if R(e) = list
∧ number of choices > list size

0 otherwise

(6)

This factor favors larger list widgets in cases where a large number of discrete choices needs to be displayed to the
user. The design of this factor was motivated by the fact that the quantity number of choices

list size is typically correlated with
scrolling performance [35].

The factors can also be used to compute components of the navigation cost N , for example:

f tab switch(R(e),T ) = #sw(T , e) ×
{

1 if R(e) = tab pane
0 otherwise (7)

This factor will return the number of switch transitions for a container element rendered as a tab pane.
By assigning a weight uk to each factor f k, and by creating factors for all the foreseeable concerns that might

affect perception of interface quality, we can rewrite Equation 3 as follows:
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(a) (b)

Figure 9: Two renderings of the classroom interface both generated under the same size constraint but using different parametrizations of the
cost function. Even though both cost functions would cause the same interface to be generated on a larger screen, under this size constraint one
emphasizes the ease of navigation (left), while the other favors convenient widgets (right). This demonstrates some of the global concerns that can
be captured by our cost function.

$(R(e),T ) =

K∑
k=1

uk f k(R(e),T ) (8)

Now the particular style of user interfaces favored by the resulting cost function can be specified by an appropriate
choice of weights. This satisfies the last of the three requirements posed for the cost function, namely that it be
parametrized to allow for easy personalization of the user interface generation process. Combining Equations 4 and 8,
the final formulation of the cost function used by Supple is as follows:

$(R(S f ),T ) =
∑

e∈S f

K∑
k=1

uk f k(R(e),T ) (9)

This cost function formulation directly captures local layout and widget choices. In combination with screen
size constraints, this function also effectively captures certain global trade-offs. For example, Figure 9 shows two
renderings of a user interface, both generated under the same size constraint but using different parametrizations of
the cost function. Even though both cost functions would cause the same interface to be generated on a larger screen,
under this size constraint one emphasizes the ease of navigation (left), while the other favors convenient widgets
(right).

Other global concerns cannot be represented using this cost function, but they can be captured with additional
interface constraints supplied at the design time (Section 3). For example, the three light controllers in the classroom
interface in Figure 9 are constrained to be rendered identically. Such global constraints can be used without sacrificing
efficiency as long as these concerns can be propagated efficiently to prune infeasible solutions. An example of a
constraint that cannot be incorporated efficiently is a constraint that the dimensions of the complete interface have
proportions between 1:1 and 2:3. Such constraint would involve all the variables in the functional specification of the
interface and it would rarely be tested before all or almost all variables were assigned. Consequently, given a very
large screen, Supple sometimes produces unusually proportioned designs (tall and narrow or short and wide).

The results of our user study suggest, however, that this cost function was expressive enough to capture almost all
the design preferences of our participants (Section 8.4.4).

The current implementation of Supple for desktop user interfaces relies on nearly 50 factors. The manual choice of
the appropriate weights can be a difficult and error-prone process. For that reason, we have also developed Arnauld
system [22], which automatically learns the right values of these weights based on a small number of preference
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(a) (b)

Figure 10: Two renderings for a print dialog interface automatically generated with different parameterizations of the cost function capturing
a user’s subjective preferences: (a) a version generated with a cost function designed to produce typical desktop user interfaces, (b) a version
generated for touch screen operation.

statements expressed by the user over concrete examples of user interfaces. The results of our subsequent studies [28]
indicate that this set of factors is expressive enough to capture most of the subjective aesthetic and usability concerns
of desktop computer users. As an example, Figure 10 shows two versions of a print dialog interface, one generated
with a cost function parametrized to generate typical desktop interfaces, and the other generated for a touch screen
operation.

5.2. Optimizing for Expected Speed of Use

The previous section described a cost function formulation that is effective for capturing subjective interface
design concerns. However, there exist a number of objective user interface quality metrics, of which perhaps the most
common is the expected time a person would take to perform all input operations required to complete a typical set of
tasks with a user interface. This metric was used, for example, as a basis for the Layout Appropriateness measure of
interface quality [76].

In this section, we extend our optimization framework to generate user interfaces that are optimized for a user’s
performance, given a predictive model of how fast a person can perform basic user interface operations such as
pointing, dragging, list selections and performing multiple clicks.

We start by defining the cost function explicitly as the Expected Manipulation Time EMT :

$(R(S f ),T ) = EMT (R(S f ),T )
= EMTnav(R(S f ),T ) +

∑
e∈S f

EMTmanip(R(e),T ) (10)

Here, EMTnav is the expected time to navigate the interface (that is, to move from one primitive widget to another,
potentially invoking new windows or switching tabs on the way), and EMTmanip is the expected time to manipulate
a widget (0 for layout widgets). This equation is equivalent to the initial cost function formulation from Equation 1
as long as EMTnav and EMTmanip capture all the transition and widget access counts from the trace T . This equation
also captures the extent to which expected movement time can be factored: the time to manipulate individual widgets
can be computed independently of other parts of the user interface, but the time to navigate the interface cannot be
computed until all widgets and layout elements have been chosen. This has implications for the efficiency of the
branch-and-bound algorithm, because a substantial portion of the estimatedSolutionCost from line 2 in Table 1 cannot
be computed until all the variables have been assigned, thus limiting the effectiveness of the admissible heuristic
guiding the search.

In the rest of this section, we confront this problem. We begin, however, with a brief description of the process for
computing EMTmanip for primitive widgets.
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5.2.1. Computing EMTmanip

Many widgets can be operated in more than one way depending on the specific data being controlled and on the
user’s motor capabilities. For example, a list widget, if it is large enough to show every item, can be operated just by
a single click. However, if some of the list elements are occluded, then the user may need to scroll before selecting
one of the not-presently-visible elements. Scrolling may be accomplished by dragging the elevator, clicking multiple
times on the up/down buttons, depressing an up/down button for a short period of time, or by clicking multiple times
in the scrolling region above or below the elevator. Which of these options is fastest depends on how far the user
needs to scroll and on how efficiently (if at all) she can perform a drag operation or multiple clicks.

To accommodate the uncertainty about what value the user will select while interacting with a widget, we assign a
uniform probability to the possible values that might be selected and then compute the expected manipulation time. To
address the choice of ways the widget may be operated (e.g., dragging the elevator versus multiple clicks on a button),
Supple computes the EMTmanip for each possible method and chooses the minimal value. One cannot decide a priori
which interaction type is the fastest for a particular widget type because the outcome depends on the circumstances of
a particular user (e.g., some eye tracking software does not provide support for dragging).

When computing movement times towards rectangular targets, Supple uses the length of the smaller of the two
sides as the target size, as suggested by MacKenzie and Buxton [51]. Although more accurate models for two-
dimensional pointing have been developed for typical mouse users [2, 30], those models are unlikely to be equally
appropriate for unusual devices, interaction techniques, and users with motor impairments, and we found the approx-
imate approach to be adequate for our purposes.

Finally, note that in order to estimate the movement time between widgets, one must take into account the size of
the target to be clicked at the end of the movement. That means that the first click on any widget counts toward the
navigation time (EMTnav) and not the time to manipulate the widget. Thus the EMTmanip for a checkbox, for example,
is 0 and the size of the checkbox affects the estimated time to navigate the interface. This increases the urgency of
bounding EMTnav before all nodes in the S f have been assigned a concrete widget; the next subsection explains how
this is done.

5.2.2. Computing a Lower Bound for EMTnav

The key to Supple’s branch-and-bound search is being able to efficiently bound the cost, including EMTnav, for
widgets which have not yet been chosen. Without such a bound, the search took many hours to generate even simple
interfaces.

To compute a lower bound on EMTnav that is applicable even when some widgets and layouts have yet to be
chosen, we proceed as follows. First, for each unassigned leaf node, e, we compute a rectangular area that is guaran-
teed to be covered by all of the widgets which are compatible with e; that is, we compute the minimum width of all
compatible widgets and separately find the minimum height, as illustrated below.

1
2
3
4
5

min widget size ( , ) = 

Figure 11: Computing minimum of widget sizes for primitive widgets.

One may now propagate these bounds upwards to compute the minimum sizes for all layout widgets corresponding
to interior nodes in the functional specification. For example, the width of an interior node with a horizontal layout
is greater than or equal to the sum of the lower bounds of its children’s widths. If an interior node has not yet been
assigned a specific layout, then we again independently compute the minimum of the possible dimensions.

Note, however, that in this case, for each element contained within a layout element (like the Button A in Fig-
ure 12), our estimate also provides the minimum distance from the edges of the layout element to the contained
element. As a result, Supple computes the most compact possible layout for an interface and thus the shortest possible
distance between any pair of elements, as illustrated in Figure 13.

To provide a lower bound on the time to move between elements es and et, we use the shortest possible distance
between the pair and the largest possible target size among the set of widgets which are compatible with the target,
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Button A Button A Button Amin widget size ( , ) = 

Figure 12: Computing minimum of widget sizes for container widgets. The result is not only the minimum dimensions of the bounding box, but
also the minimum distance between any of the enclosed elements and the bounding box.

Button A Button B

min distance
from Button A
to Button B

Figure 13: Computing minimum distance between two elements in a layout.

et, because movement times grow with the distance and decrease with the size of the target. Supple updates these
estimates every time an assignment is made (or undone via backtracking) to any node in the functional specification
during the branch-and-bound search process.

More complex layout elements such as tab panes, pop-up panes, or pop-up windows make this process only
slightly more complicated; most notably, they require that multiple trajectories are considered if a node on a path
between two widgets can be represented by a tab or a pop-up. However, the principle of this approach remains
unchanged.

Our results (Section 7.5) show that this lower bound on EMTnav resulted in dramatic improvements to the algo-
rithm performance.

In this section, we have assumed the availability of a model that can predict how long a person would take on
average to perform basic user interface operations such as clicking on a distant target, dragging, selecting from a list,
or performing multiple clicks on the same object. Fitts’ law [15]—a two parameter regression model—and related
models (e.g., a related model developed for scrolling performance [35]) are typically used for the purpose. We have
previously demonstrated that these approaches poorly capture individual differences among people with unusual abil-
ities or who use atypical devices [27]. We have therefore developed AbilityModeler [27, 28], which automatically
selects the features of and then trains a custom regression model for each user. Figure 33 in Section 8 shows several
examples of user interfaces generated based on a personalized ability model produced by AbilityModeler.

5.3. Capturing Consistency Across Interfaces For Different Devices

Supple enables people to access their applications on a variety of devices. This is a welcome opportunity but
also a challenge: users may need to learn several versions of a user interface. To alleviate this problem, newly
created user interfaces for any particular application—even if they are created for a novel device—should be consistent
with previously created ones that the user is already familiar with. Consistency can be achieved at several different
levels, such as functionality, vocabulary, appearance, branding, and more [72]. By creating all versions of a user
interface from the same model, Supple naturally supports consistency at the level of functionality and vocabulary. In
this section, we present an extension to Supple’s cost function that allows it to account for dissimilarities in visual
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appearance and organization between pairs of interfaces. The objective is, if an interface was once rendered on a
particular device (for example, a desktop computer) and it now needs to be rendered for a different platform (for
example, a PDA), the new interface should strike a balance between being optimally adapted to the new platform and
resembling the previous interface.

For that reason, we extended Supple’s cost function to include a measure of dissimilarity between the current
rendering R and a previous reference rendering Rre f :

$(R(S f ),T ,Rre f (S f )) = $(R(S f ),T ) + αs∆(R(S f ),Rre f (S f )) (11)

Here, T as before stands for a user trace, $(R(S f ),T ) is the original cost function, and ∆(R(S f ),Rre f (S f )) is a
dissimilarity metric between the current rendering R and the reference rendering Rre f . The user-tunable parameter αs

controls the trade-off between a design that would be optimal for the current platform and one that would be maximally
similar to the previously seen interface.

As with the cost function introduced in Section 5.1, we define the dissimilarity function as a linear combination
of K factors f k :W×W 7→ {0, 1}, which for any pair of widgets returns 0 or 1 depending on whether or not the two
widgets are similar according to a particular criterion. Each factor corresponds to a different criterion. Because dis-
similarity factors are defined in terms of differences between individual widgets, overall dissimilarity factors similarly
to the cost function from Section 5.1:

∆(R(S f ),Rre f (S f )) =
∑

e∈S f

K∑
k=1

uk f k(R(e),Rre f (e)) (12)

Thus the dissimilarity function can be computed incrementally, supporting efficient computation of an effective
admissible heuristic.

5.3.1. Relevant Widget Dissimilarity Features
To find the relevant widget features for comparing visual presentations of interface renderings across different

platforms, we generated interfaces for several different applications for several different platforms and examined
cross-device pairs that appeared most and least similar to one another. These observations resulted in a preliminary
set of widget features. Those relevant to primitive widgets (as opposed to the layout and organization elements) are
listed below:

Language {toggle, text, position, icon, color, size, angle}— the primary method(s) a widget uses to convey its value;
for example, a slider uses the position, a list uses text and position, a checkbox uses toggle.

Domain visibility {full, partial, current value} — some widgets, like sliders, show the entire domain of possible
values, while lists and combo boxes are likely to show only a subset of all possible values and spinners only
show the current value.

Continuous/discrete — indicates whether or not a widget is capable of changing its value along a continuous range
(e.g., a slider can, while a list or a text field are considered discrete).

Variable domain {yes, no}— the domain of possible values can be easily changed at run time for some widgets (e.g.,
lists), while the set of options is fixed for others (e.g., sets of radio buttons).

Orientation of data presentation {vertical, horizontal, circular} — if the domain of possible values is at least par-
tially visible, there are different ways of arranging these values.

Widget geometry {tall, wide, even}— corresponds to the general appearance of the widget; in some cases it may be
different from the orientation of data presentation such as in a short list widget, where elements are arranged
vertically but the whole widget may have horizontal (or wide) appearance.

Primary manipulation method {point, drag, text entry}— the primary way of interacting with the widget.
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(a) (b) (c)

Figure 14: An illustration of Supple’s interface presentation consistency mechanism: (a) a reference touch panel rendering of a classroom controller
interface, (b) the rendering Supple considered optimal on a keyboard and pointer device in the absence of similarity information, (c) the rendering
Supple produced with the touch panel rendering as a reference.

The features of container widgets (that is, those used to organize other elements) have to do with two salient
properties:

Layout geometry {horizontal, grid, vertical}— reflects the basic layout geometry of the enclosed elements.

Impact on visibility {yes, no}— indicates whether or not this widget can affect the visibility of some elements in the
user interface; for example, tab panes and pop-up windows can change the visibility of interface elements.

Figure 14 shows an example of a user interface that the user first used on a touch panel, along with two versions of
that interface for a desktop computer: one that was generated using only the base cost function and one that included
the dissimilarity component.

6. Dynamic Personalization of Automatically Generated UIs

Previous sections demonstrated how to automatically generate user interfaces adapted to a particular device, a
person’s typical usage pattern, and, possibly, his or her unique motor abilities. However, people’s tasks and needs
change frequently, and user interfaces adapted to a person’s average context may not be ideal in all situations, even
though they do capture many of the person’s idiosyncrasies. In this section we present two approaches for run-time
personalization of Supple-generated user interfaces: system-driven automatic adaptation and user-driven customiza-
tion.

6.1. System-driven Automatic Adaptation

The inclusion of usage traces in the cost functions allows Supple to generate user interfaces that reflect a person’s
long-term tasks and usage. However, a person may use the same software for a variety of different types of tasks. In-
formed by the results of several user studies we conducted [24, 25], we implemented the Split Interface approach [24]
in Supple for adapting to the user’s task at hand. In Split Interfaces, functionality that is predicted to be immediately
useful to the user is copied to a clearly designated adaptive area of the user interface while the main interface remains
unchanged. Unlike some other adaptive approaches, Split Interfaces reliably improve both user performance and
satisfaction [24].

In contrast to previous implementations of this general approach, which could only adapt contents of menu
items [77, 14] or toolbar buttons [24], Supple can adapt arbitrary functionality: frequently used but hard to ac-
cess functionality is copied to the functional specification of the adaptive area and Supple automatically renders it in
a manner that is appropriate given the amount of space available in the adaptive part of the interface. For example,
if the user frequently changes the print orientation setting, which requires 4 to 6 mouse clicks to access in a typical
print dialog box, Supple will automatically copy that functionality to the adaptive part of the main print dialog box
(Figure 15).
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(a) (b) (c)
Figure 15: In the original print dialog box, it takes four mouse clicks to select landscape printing: (a) details button, (b) features tab, landscape
value and then a click to dismiss the pop-up window. (c) shows the interface after automatical adaptation by Supple, given frequent user manipu-
lation of document orientation; the adapted interface is identical to the one in (a) except for the Common Activities section that is used to render
alternative means of accessing frequently used but hard to access functionality from the original interface.

6.2. User-driven Customization
We have already discussed two system-driven approaches to adapting user interfaces in Supple: automatic adap-

tation to a person’s long-term usage patterns by incorporating usage traces in the cost function, and the Split Interface
approach for automatic adaptation to the current task. In this section, we introduce a complementary user-driven
customization mechanism.

Just as with traditional user interfaces, some users may want to customize the organization or presentation of
user interfaces generated by Supple. Customization mechanisms offer users control over the user interface and may
contribute to significant improvement in satisfaction and performance when used to create custom simplified versions
of the interface that are streamlined for the user’s individual tasks and habits [52, 53].

Supple includes a comprehensive customization facility that allows a designer or an end user to make explicit
changes to an interface, rearranging elements, duplicating functionality, removing elements, and constraining the
choice of widgets used to render any part of the functional specification. Operation is simple on a windows and mouse
platform: one simply right-clicks the interface element (primitive widget or container), and options for customization
are revealed. Duplication and rearrangement are specified with drag-and-drop. This is a much broader range of cus-
tomizations than those possible with manually-created user interfaces, where presentation customizations are usually
restricted to colors and other cosmetic changes, and where organizational changes are typically limited to menus and
toolbars.

As illustrated in Figure 16, customizations are recorded as a customization plan and they are represented as
modifications to the original functional specification rather than as changes to a particular concrete user interface.
Specifically, changes to the presence or location of user interface functions are recorded as modifications to the
structure of the functional specification while modification to the presentation of the interface (user’s choice of a
widget or layout for a particular element) are recorded as interface constraints. The interface generation process is
thus extended to include an additional pre-processing step, where the customization plan is applied to the functional
specification. Only then, the customized functional specification is rendered as a concrete user interface.
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Figure 16: Supple’s customization architecture. The user’s customization actions are recorded in a customization plan. The next time the interface is
rendered (possibly in a differently sized window or on a different device) the plan is used to transform the functional specification into a customized
specification which is then rendered using decision-theoretic optimization as before.

Figure 17: An illustration of the customization mechanism: (left) an interface for a font formatting dialog generated automatically by Supple;
(right) the same interface customized by the user: the Text Effects section was moved from a separate tab to the section with main font properties,
and the presentation of Underlying Style element was changed from radio buttons to a combo box.

This approach allows customizations performed on one device to be reproduced on other devices, except in cases
where equivalent widgets or layouts are not available on the novel device.

Customization plans are editable by users, who may choose to undo any of the earlier customizations, and they
can do so even out of order (unlike the typical stack-based implementations of undo functionality). If any of the later
customizations depend on the earlier customization the user is attempting to undo, Supple will notify the user of the
dependency thereby allowing her to either abandon the undo operation or undo all dependent customizations as well.

The separation of customization plans from the actual interface representation, together with the ability to edit
those plans, offers the potential for users to share and collaborate on their user interface modifications.

Figure 17 shows an example of a user interface where both presentation and organization of the interface have
been customized. Another more in-depth example is discussed in Section 7.3.
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Figure 18: An interface for the classroom controller application rendered automatically by Supple for a PDA, a desktop computer, a touch screen,
and HTML browser, and a WAP phone.

7. Evaluation

In this section we examine Supple’s technical capabilities and limitations.

7.1. Versatility

We demonstrate Supple’s versatility by exhibiting the range of different types of interfaces it has generated. Earlier
in this paper, we presented an interactive map-based interface (Figure 2), a fully functional email client (Figure 3), an
interface to Amazon web services (Figure 4), an FTP client (Figure 5), an interface for controlling lighting, ventilation
and audio-visual equipment in a classroom (Figure 14), and two different print dialog windows (Figures 10 and 15). In
this section, Figure 17 provides an example of Supple’s customization capabilities on a dialog box for font formatting.
Figure 18 illustrates a range of supported devices: the interface for controlling classroom equipment was rendered
for such diverse platforms as a touch panel, an HTML browser, a PDA, a desktop computer and a WAP cell phone.
Figure 19 shows a user interface for controlling a stereo rendered on a PDA and on a desktop computer. Figure 23
shows a Supple reimplementation of Microsoft’s Ribbon interface for Word 2007. Finally, Figure 33 in the next
section, shows a font formatting dialog generated for users with different motor abilities.

These examples demonstrate a range of different types of interfaces: device control (classroom and stereo), dialog
boxes (font formatting), media-based (map), and data-oriented applications (email and the Amazon client).

Additionally, compared to previous rule-based approaches, optimization robustly and flexibly handles tradeoffs
and interactions between choices in different parts of the interface. For example, a rule-based system will likely fail to
exploit an increase in screen size (or decrease in interface complexity) by using more convenient but larger widgets.
In contrast, Supple’s search algorithm always selects an interface that is optimal (with respect to the cost function)
for a given interface and device specification. Figure 20 illustrates how Supple robustly degrades the quality of the
generated user interfaces as it is presented with devices with progressively narrower screens.

7.2. Adapting To Long-Term Usage Patterns

Both formulations of the cost function described in this paper incorporate usage statistics from a usage model.
These statistics impact how Supple generates user interfaces. For example, Figure 21 shows two versions of the
classroom interface rendered under the same size constraint. The two interfaces were generated in response to two
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Figure 19: A user interface for controlling a stereo rendered automatically by Supple for a PDA (top) and a desktop computer (bottom).

different usage models. The rendition in Figure 21a was based on a usage trace that represented uniform usage of all
the features, while the one in Figure 21b was generated in response to a usage pattern where the three light controls
were always manipulated in sequence. The second interface, even though it uses less convenient widgets, makes it
easier to navigate between individual light controls than the first one.

7.3. User-driven Customization

Microsoft Ribbon (Figure 22) is an interface innovation introduced in Microsoft Office 2007 as a replacement
for menus and toolbars. One of its important properties is that the presentation of the contents of the Ribbon can
be adapted based on the width of the document window. The adaptation is performed in several ways, including
removing text labels from buttons, re–laying out some of the elements and replacing sections of the Ribbon with
pop-up windows. Figure 23a shows a fragment of the Ribbon re-implemented in Supple, while Figure 23b shows that
same fragment adapted to fit in a narrower window.

The size adaptation of the Microsoft Ribbon is not automatic—versions for different window widths were designed
by hand. An unfortunate consequence of this approach is that no manual customization of the Ribbon is possible:
unlike the toolbars used in earlier versions of MS Office, the Ribbon has no mechanism to enable moving, copying,
adding, or deleting buttons, panels or other interface elements.

Supple’s automatic interface generation algorithm, which takes size as one of the input constraints, automatically
provides the size adaptations (Figure 23b). More importantly, however, Supple’s customization mechanisms allow
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Figure 20: Supple optimally uses the available space and robustly degrades the quality of the rendered interface if presented with a device with a
smaller screen size. This figure shows three renderings of a classroom controller on three devices with progressively narrower screens.

(a)

(b)

Figure 21: The classroom interface rendered for a small screen size: (a) with an empty user trace (b) with a trace reflecting frequent transitions
between individual light controls.

people to add new panels to the Supple version of the Ribbon as well as to move, copy, and delete functionality. The
customized Ribbon can be naturally adapted to different size constraints by Supple (Figure 23c). In this case, auto-
matically generated and adapted interactions can improve users’ sense of control compared to the manually created
solution.

7.4. System Performance

We now systematically evaluate the performance of Supple’s optimization algorithm on a variety of user interfaces
and for a range of screen size constraints.

The computational problem that Supple solves to generate user interfaces is that of constrained combinatorial
optimization. This is a computationally hard problem—exponential in the number of specification elements, in the
worst-case—but in practice, most instances of such problems are tractable, with just a small number of instances being
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(a)

(b)

Figure 22: A fragment of the official Microsoft Ribbon (a) presented in a wide window; (b) the same Ribbon fragment adapted to a narrower
window: some functionality is now contained in pop-up windows.

(a)

(b) (c)

Figure 23: A fragment of our Supple re-implementation of the Microsoft Ribbon (a) rendered for a wide window; (b) Supple automatically provides
the size adaptations (enlarging commonly-used functionality based on the user trace), which are manually designed in the original version of the
MS Ribbon; (c) unlike the manually designed Ribbon, the Supple version allows users to add, delete, copy and move functionality; in this example,
New Container section was added, its contents copied via drag-and-drop operations from other parts of the interface and the Quick Style button
was removed from the Drawing panel; the customized Supple version of the Ribbon can still adapt to different size constraints.

substantially harder to solve. Intuitively, given a large amount of screen space, a large fraction of possible renderings
will satisfy the size constraints, and the greedy approach of always trying the best widgets first will likely result in
quick computation of the optimal interface. Conversely, given a very small amount of screen space, there will be
very few or no legal renderings and the constraint propagation process will easily narrow down the solution space to
a very small fraction of the original. The hardest problems are therefore somewhere in the middle, in the area where
the problem transitions from being under-constrained to being over-constrained. When the existence and the location
of these hardest problems are independent of the particular algorithm used, it is frequently referred to as the phase
transition phenomenon [70, 33, 32]. For some problem spaces, the existence and the location of such phase transitions
can be predicted analytically [89]. The space of user interface generation problems, however, is highly discontinuous
and therefore hard to investigate analytically. We, therefore, proceed with an empirical investigation.

7.4.1. Variable Ordering Heuristics and the Parallel Algorithm
We empirically investigate both the average and the worst-case performance of Supple’s algorithm, using the

factored version of the cost function described in Section 5. We start by investigating the properties of the three
variable ordering heuristics considered in Section 4: bottom-up, top-down, and minimum remaining values (MRV).
To examine a representative cross-section of the problem space for each interface considered, we pick two extreme
screen size constraints: one so large that a greedy approach to generating a user interface will succeed, the second just
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Figure 24: Algorithm performance (quantified by the number of nodes considered by the search algorithm) for three different user interfaces
studied systematically over 101 size constraints for three different variable ordering heuristics: minimum remaining values (MRV), bottom-up and
top-down.

small enough that no interface can be generated for it. We interpolate at 100 intervals between these two extremes for
a total of 101 screen sizes, and for each size we run the optimization algorithm, collecting the following measures:

• The number of nodes expanded by the search algorithm before it finds the first solution and before it finds the
best solution.

• The time taken before the algorithm finds the first solution and before it finds the best solution.

Because execution time is proportional to the number of nodes expanded (see Figure 26) and is hardware-
dependent, we omit this measure when comparing different algorithm variants, but we report it in the next subsection
when we consider the scalability of the approach.
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Map 8 2.16E+02 17 13 23 29 0.07 0.10 0.14 0.35
Test interface A 4 3.51E+02 15 15 106 69 0.13 0.19 0.78 1.53
Test Interface B 8 2.84E+04 40 31 458 269 0.05 0.08 0.84 0.62
Email 25 7.74E+05 49 46 464 387 0.03 0.05 0.34 0.35
Classroom 11 7.80E+07 84 105 2,131 2,125 0.04 0.12 0.52 1.02
Test Interface C 16 1.87E+08 210 50 7,210 6,571 0.14 0.10 2.67 3.81
Ribbon 32 5.44E+08 1,252 1,237 21,757 21,759 0.32 0.42 3.10 4.51
Synthetic 15 1.27E+11 72 40 1,129 836 0.05 0.06 0.44 0.68
Print Dialog 27 3.54E+13 2,024 2,095 120,710 99,035 0.59 0.91 30.31 27.87
Font Formatting 27 2.76E+15 1,025 1,224 106,979 126,135 0.36 0.65 23.17 35.09
Stereo 28 2.79E+17 42 139 323,049 230,900 0.03 0.14 66.15 89.04

Interface Parallel-2 Parallel-3 Parallel-2 Parallel-3 Parallel-2 Parallel-3 Parallel-2 Parallel-3

Time taken (seconds)
median maximum

Number of 
unconstrained 
elements in the 

specification

Number of 
possible 
concrete 

interfaces

Number of nodes explored
median maximum

Table 2: The performance of the Supple’s rendering algorithms with respect to the complexity of the user interface. Both the average case (median)
and worst-case (maximum) are reported using time as well as the number of nodes expanded by the search algorithm.

Figure 24 shows the performance of the three variable ordering heuristics across the range of screen size constraints
for three interfaces of different levels of complexity: the classroom controller (as the one in Figure 20), a print dialog
box (Figure 15), and a stereo controller interface (Figure 19).

This figure illustrates the existence of narrow bands in the problem space where the algorithms perform up to
several orders of magnitude worse than in other parts of the problem space. It also illustrates another important
phenomenon: the MRV and bottom-up heuristics tend to exhibit their worst performance in slightly different parts
of the problem space. This is an important observation because it suggests that actual algorithm-independent phase
transition phenomenon may not be taking place, and that combining these two approaches can result in an algorithm
that performs orders of magnitude better in the worst-case than either of the two approaches alone.

Motivated by the above results, we implemented two variants of a parallel algorithm. The first, which will be
referred to as Parallel-2, concurrently runs (in parallel threads) two searches driven by the two variable ordering
heuristics whose regions of worst performance do not overlap: the bottom-up and the MRV heuristics. The second,
Parallel-3, runs three concurrent searches, one for each of the three heuristics.

In both parallel algorithms, we expected to see the benefit of the individual algorithms experiencing worst per-
formance in different regions of the problem space. In addition, the parallel searches explore the solution space in
different orders, coming across solutions at different times, but they share the bestCost variable (see Table 1) used for
branch and bound pruning. Therefore, we expected that sharing of the cost of the best solution found so far by one of
the searches will improve the pruning power of the others.

Figure 25 shows the performance of the two parallel algorithms on the three example interfaces introduced in
Figure 24. In each case, the best-performing variant from Figure 24 is also shown for comparison. Note that unlike
the previous figure, this one uses a logarithmic scale on the y-axes to highlight large differences in performance.

The average-case performance in all instances remained the same as that of the single search, but, as expected, the
worst-case performance improved dramatically: by an order of magnitude in the case of the classroom interface and
by nearly two orders of magnitude for the print dialog and the stereo interface.

7.4.2. Scalability
Next, we investigate how our approach scales with the complexity of the interfaces it generates.
We evaluated the two parallel algorithms with 11 different user interfaces, a number of which are used as examples

throughout this article. In Table 2, we first report for each interface the number of elements in the functional speci-
fication (excluding those for which rendering is constrained through the same rendering constraint), and the number
of possible interface renderings that the algorithm will consider. As in the previous section, for each interface, we
measured the performance at 101 different points throughout the problem space. We measured both the number of
nodes explored and the total time taken to produce the best solution. We report both the average case values (the
median across all trials) and the worst-case numbers.
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Figure 25: The performance (quantified by the number of nodes considered by the search algorithm) of the two parallel algorithms compared to
the best-performing single-threaded variant from Figure 24. The Parallel-2 algorithm combines algorithms driven by the bottom-up and the MRV
heuristics. Results are presented for three different user interfaces studied systematically over 101 size constraints. To enable direct comparison,
we use a log scale on the y-axis. The worst-case performance of the parallel algorithms is up to two orders of magnitude better than of any of the
single algorithms.
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Figure 26: The worst-case performance of the two parallel algorithms with respect to the complexity of the user interface. The x-axes shows the
number of possible user interfaces. In the left graph, the y-axis shows the maximum number of nodes explored by the search algorithms before the
best solution was found. In the right graph, the y-axis shows the actual time taken. The tests were conducted on a dual core machine. This is why
the Parallel-3 algorithm took more time than Parallel-2 even though it explored fewer nodes on average.

Note that the number of possible interfaces considered spans 15 orders of magnitude, from 216 for the map
interface to 2.8 × 1017 for the stereo interface. Yet, across this entire range, the median time to find the best interface
remains under 1 second.

The median performance of the two algorithms did not vary significantly when measured by the number of nodes
explored by the search algorithm. But running on a dual-core processor, the Parallel-2 algorithm was a little faster on
average than Parallel-3. In the worst case, the Parallel-3 algorithm typically explored fewer nodes, but required more
time. Again, this result reflects the particular hardware architecture used in the experiments.

While the average performance does not correlate with interface complexity, the worst-case performance does.
In fact, exponential regression reveals an exponential relationship between the number of possible interfaces and the
worst-case execution time or the number of nodes explored by the search algorithm. For the Parallel-2 algorithm,
the relationship between the number of possible interfaces, n, and the number of nodes expanded is 22.52 × n0.246

(R2 = 0.97), and for Parallel-3 it is 18.83 × n0.247 (R2 = 0.94). Figure 26 illustrates these relationships. Of course,
because the exponents smaller than 1, the performance scales sub-linearly, specifically as a root of n. Furthermore,
the nearly identical exponents suggest that there is not substantial difference in performance between the two parallel
algorithms. This is consistent with our earlier observation that the worst-case performance for the top-down variable
ordering tended to overlap with with one of the other two (Figure 24).

7.4.3. Importance of Constraint Propagation
Unsurprisingly, constraint propagation has a significant impact on the algorithm’s performance. Figure 27 shows

the performance of the Parallel-2 algorithm with only forward checking instead of full constraint propagation for
the size constraints. For comparison, the dark line toward the bottom of the graph shows the performance of the
algorithm with full constraint propagation enabled. For this interface (classroom), the performance was an order of
magnitude worse both in the average case (936 versus 84 nodes) and in the worst case (21,088 versus 2,131 nodes).
The performance of the algorithm with constraint propagation entirely turned off was too slow to measure.

7.5. Performance When Optimizing For Expected Speed of Use

The cost function introduced in Section 5.2 allows Supple to generate user interfaces that are predicted to be the
fastest for a particular person to use. The structure of that cost function does not support as efficient computation of
an admissible heuristic for guiding the search as does the first cost function that was used for earlier analyses.
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Figure 27: The worst-case performance of the parallel-2 algorithm with only forward checking (a limited version of constraint propagation) with
respect to the complexity of the user interface. The x-axis shows the number of possible user interfaces and the y-axis shows the maximum number
of nodes explored by the search algorithm. For comparison, the performance of the algorithm with full propagation of the size constraints enabled
is shown in solid black line (bottom of the graph).

With this cost function, Supple needed between 3.6 seconds and 20.6 minutes to compute user interfaces. These
results take advantage of the lower-bound estimation method for EMTnav, which reduced the runtime for one of the
less complex interfaces from over 5 hours to 3.6 seconds, and without which more complex interfaces would have
required days to be rendered.

We note that execution times on the order of 10-20 minutes (in the worst case) will still allow practical deployment
of the system, if caching is used, for users whose conditions do not change frequently.

7.6. Model Complexity
Comparisons of code quantity among different approaches are often controversial. Yet, we feel it is useful to

report the amount of code3 devoted to the description and management of the user interface for several of the examples
reported in this paper. These numbers are reported in Table 3. While we do not have the data showing how much
code would be required to build analogous interfaces by hand, the numbers in Table 3 provide some evidence that our
approach does not impose excessive burden on the programmer.

Classroom Map Email Amazon
Font 
Formatting Stereo Ribbon

Lines of user 
interface code 77 70 515 59 125 125 140

Table 3: Lines of code used to construct and manage the user interfaces for several of the applications presented throughout this paper.

8. User Evaluation

In this section we present a user evaluation of a concrete application of Supple: automatically generating user
interfaces adapted to the individual abilities of users with motor impairments. As we have argued earlier in the
paper, there is a mismatch between the effective abilities of people with motor impairments and what the creators of
typical interfaces assume about the user’s strength, dexterity, range of motion, and input devices. This mismatch can
prevent or impede interaction with computers. In contrast, even users with severe impairments can effectively operate

3Numbers were calculated using the Metrics plugin for Eclipse available at metrics.sourceforge.net and reflect all method lines in classes
devoted to the interface description for each of the examples.
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Participant Health Condition Device Used Controlled with
MI01 Spinal degeneration Mouse hand
MI02 Cerebral Palsy (CP) Trackball chin
MI03 Friedrich's Ataxia Mouse hand
MI04 Muscular Dystrophy Mouse two hands
MI05 Parkinson's Mouse hand
MI06 Spinal Cord Injury Trackball backs of the fingers
MI07 Spinal Cord Injury Trackball bottom of the wrist
MI08 Undiagnosed; similar to CP Mouse fingers
MI09 Spinal Cord Injury Trackball bottom of the fist
MI10 Dysgraphia Mouse hand
MI11 Spinal Cord Injury Mouse hand

Table 4: Detailed information about participants with motor impairments (due to the rarity of some of the conditions, in order to preserve participant
anonymity, I report participant genders and ages only in aggregate).

MI02 MI04MI06 MI10

Figure 28: Different strategies employed by our participants to control their pointing devices (MI02 uses his chin).

user interfaces designed with their unique abilities in mind (e.g., [31, 38]). Because of a great variety in individual
abilities [5, 39, 41, 46], many such user interfaces are needed. Unlike manual redesign, automatic generation of such
individual ability-based interfaces is a scalable solution.

8.1. Overview of the Approach

We evaluate two approaches for automatically generating user interfaces adapted to a person’s individual motor
abilities. The first approach uses the Arnauld system [22] to model users’ subjective preferences about what user
interfaces are best for them, and it relies on the factored cost function described in Section 5.1 to generate the user
interfaces. The second approach uses AbilityModeler [27, 28] to build a model of a person’s actual motor abilities;
this approach uses the cost function that allows Supple to directly optimize for the expected speed of use (Section 5.2).

We divided the study into two parts, performed on two separate days. During the first part, each participant
interacted with Arnauld and then with the AbilityModeler. During the second part, we evaluated participants’
performance and satisfaction when using 9 different user interfaces: 3 were baselines copied from existing software,
3 were automatically generated for each participant based on his or her preferences, and 3 were generated based on
the participant’s measured abilities.

8.2. Participants

Altogether, 11 participants with motor impairments (age: 19–56, mean=35; 5 female) and 6 able-bodied partici-
pants (age: 21–29, mean=24; 3 female) recruited from the Puget Sound area took part in the study. The abilities of
participants with motor impairments spanned a broad range (Table 4), and they used a variety of approaches to control
their pointing devices (Figure 28). All but one reported using a computer multiple hours a day and all reported relying
on the computer for some critical aspect of their lives.
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Figure 29: An example of a query used during the active elicitation part of the preference elicitation.

8.3. Apparatus

We used an Apple MacBook Pro (2.33GHz, 3GB RAM) laptop for all parts of the study. Most participants came
to our lab for the study and used an external Dell UltraSharp 24” display running at 1920 × 1200 resolution, but 3
of the 11 motor-impaired participants chose to conduct the experiment at an alternative location of their choosing; in
these cases, we used the laptop’s built-in 15” display running at the 1440 × 900 resolution.

Each participant had the option of adjusting the parameters of their chosen input device (e.g., tracking speed,
button functions). Additionally, we offered the participants with motor impairments the option to use any input device
of their choosing, but all of them chose to use either a Dell optical mouse or a Kensington Expert Mouse trackball
(Table 4). All able-bodied participants used a mouse. The same equipment with the same settings was used in both
parts of the experiment by each participant.

8.4. Part 1: Eliciting Personal Models

8.4.1. Preference Elicitation Tasks
We used Arnauld [22] to elicit participants’ preferences regarding presentation of graphical user interfaces.

Arnauld supports two main types of interactions: system-driven active elicitation and user-driven example critiquing.
During active elicitation participants are presented with queries showing pairs of user interface fragments and

asked which, if either, they prefer. The two interface fragments are functionally equivalent, but differ in presentation.
The fragments are often as small as a single element, but can be a small subset of an application or an entire applica-
tion (Figure 29). The queries were generated automatically based on earlier responses from the participant, so each
participant saw a different set of queries. The interface fragments used in this study came from two applications: a
classroom controller (Figure 20) and a stereo controller (Figure 19). These applications were unrelated to those used
in the next phase of this experiment.

During the subsequent example critiquing phase, the participants were shown the interfaces that Supple would
generate for them for the classroom and stereo applications. The participants were then offered a chance to suggest
improvements to those interfaces. In response, the experimenter would use Supple’s customization capabilities to
change the appearance of those interfaces accordingly. These customization actions were used as additional input
by Arnauld. If a participant could not offer any suggestions, the experimenter would propose modifications. The
original and modified interfaces would then be shown to the participant. Participants’ acceptance or rejection of the
modification would be used as further input to Arnauld.

8.4.2. Ability Elicitation Tasks
We used the AbilityModeler [27, 28] to build a model of each participant’s motor abilities. The AbilityModeler

builds a predictive model of a person’s motor performance based on the person’s observed performance on four types
of basic tasks: pointing, dragging, list selection, and performing multiple clicks on a single target (Figure 30), each
repeated multiple times for different target sizes, distances to the target, and the angles of motion (where appropriate).
The particular settings used in this study were:
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(a) Pointing (b) Dragging (d) List Selection(c) Clicking

Figure 30: The setup for the performance elicitation study: (a) for pointing tasks; (b) for dragging tasks—here the green dot was constrained to
move in only one dimension, simulating the constrained one-dimensional behavior of such draggable widget elements like scroll bar elevators of
sliders; (c) for multiple clicks on the same target; (d) for list selection.

• Pointing. We varied target size (10–90 pixels at 6 discrete levels), distance (25–675 pixels, 7 levels), and
movement angle (16 distinct uniformly spaced angles).

• Dragging. We varied target size (10–40 pixels, 3 levels), distance (100 or 300 pixels) and direction (up, down,
left, right).

• List Selection. We varied the height of the scroll window (5, 10, or 15 items), the distance (measured in the
number of items between successive list items to be selected; 10–120, 7 levels), and the minimum size of any
clickable element, such as list cells, scroll buttons, scroll bar elevator, or scroll bar width (15, 30, or 60 pixels).

• Multiple Clicking. We used 5 targets, of diameters varying from 10 to 60 pixels.

8.4.3. Procedure
At the beginning of the session, participants had a chance to adjust input device settings (e.g., tracking speed) and

the physical setup (e.g., chair height, monitor position). We then proceeded with preference elicitation followed by
ability elicitation, encouraging the participants to rest whenever necessary.

Preference elicitation took 20-30 minutes per participant. Ability elicitation took about 25 minutes for able-bodied
participants and between 30 and 90 minutes for motor-impaired participants.

8.4.4. Note on the Validity of Preference Models
Between 30 and 50 active elicitation queries and 5 to 15 example critiquing answers were collected from each

participant. Between 51 and 89 preference constraints (mean=64.7) were recorded for each participant. On average,
the cost functions generated by Arnauld were consistent with 92.5% of the constraints generated from any one partic-
ipant’s responses. This measure corresponds to a combination of two factors: consistency of participants’ responses
and the ability of Supple’s cost function to capture the nuances of participant’s preferences. While this result cannot
be used to make conclusions about either the participants or the system alone, it does offer support that the resulting
interfaces will reflect users’ stated preferences accurately.

8.5. Part 2: Main Experiment

8.5.1. Tasks
We used three different applications for this part of the study: a font formatting dialog box from Microsoft Word

2003, a print dialog box from Microsoft Word 2003, and a synthetic application. The first two applications were
chosen because they are frequently used components from popular productivity software. We created the additional
synthetic application to include a variety of data types typically found in dialog boxes, some of which were not
represented in the two other applications (for example, approximate number selections, which can be represented in
an interface with a slider or with discrete selection widgets).
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Figure 31: The baseline variant for the font formatting and print dialog boxes. They were designed to resemble the implementations in MS Office
2003. Two color selection widgets in the font formatting interface were removed, and the preview pane was not functional.

For each application, participants used three distinct interface variants: baseline, preference-based, and ability-
based. The baseline interfaces for the font formatting and print dialog boxes were the manufacturer’s defaults, re-
implemented in Supple to allow for instrumentation, but made to look like the original (see Figure 31). For the
synthetic application, we strove for a ‘typical’ design for a dialog box: it is compact, and relatively uncluttered.

Both the preference- and the ability-based interface variants were automatically generated for each participant
individually using the individual preference and ability models that were elicited during the first meeting with the
participant.

For the automatically generated user interfaces, we set a space constraint of 750×800 pixels for print and synthetic
applications and 850×830 pixels for the font formatting application (see Figures 33 and 34 for examples). These space
constraints are larger than the amount of space used by the baseline versions of those applications, but are reasonable
for short-lived dialog boxes and our particular hardware configurations. We used the same space constraints for all
participants to make results comparable.
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Figure 32: Participants were visually guided to the next element in the interface to be manipulated. The orange border animated smoothly to the
next element as soon as the previous task was completed.

Participants performed 6 sets of tasks with each of the interfaces. The first set counted as practice and was not
used in the final analysis. Each set included between 9 and 11 operations, such as setting a widget’s value or clicking
a button; however, if a particular interface included tab panes, interactions with tab panes were recorded as additional
operations. For example, if the user had to access Font Style after setting Text Effects in the baseline font formatting
interface (Figure 31 top-left), they would have to perform two separate operations: first click on the Font tab and then
select the Style.

During each set of tasks, participants were guided visually through the interface by an animated rectangle (Fig-
ure 32). An orange border indicated which element was to be manipulated, while the text on the white banner above
described the action to be performed. As soon as the participant set the value of a widget or clicked on a tab, the
rectangle animated smoothly to the next interface element to indicate the next task to be performed. The animation
took 235 ms. We chose to use this approach because we were interested in studying the physical efficiency of the
candidate interfaces separate from any other issues that may affect their usability. The animated guide eliminated
most of the visual search time required to find the next element, although participants still had to find the right value
to select within some widgets.

All tasks were performed entirely with a pointing device without the use of keyboard shortcuts.

8.5.2. Procedure
We presented participants with each of the 9 interfaces in turn: 3 applications (font formatting, print dialog, and

synthetic) × 3 interface variants (baseline, preference-based, and ability-based). Interface variants belonging to the
same application were presented in contiguous groups. With each interface variant, participants performed 6 distinct
task sets, the first being considered practice (participants were told to pause and ask clarifying questions during the
practice task sets, but to proceed at a consistent pace during the test sets). Participants were encouraged to take a break
between task sets.

The tasks performed with each of the 3 interface variants of an application were identical and were presented
in the same order. We counterbalanced the order of the interface variants both within each participant and across
participants. The order of the applications was counterbalanced across participants.

After participants completed testing with each interface variant, we administered a short questionnaire asking
them to rate the variant’s usability and aesthetics. After each block of three variants (i.e., after each application), we
additionally asked participants to rank the three interfaces on efficiency of use and overall preference. Finally, at the
end of the study, we administered one more questionnaire recording information about participants’ overall computer
experience, the computer input devices they typically use, and their impairment (if any).

8.5.3. Generated Interfaces
Figure 33 shows three examples of user interfaces generated by Supple based on participants’ measured motor

capabilities. These “ability-based user interfaces” tended to have widgets with enlarged clickable targets requiring
minimal effort to set (e.g., lists and radio buttons instead of combo boxes or spinners). In contrast, user interfaces
automatically generated by Supple based on participants’ stated preferences (see Figure 34) tended to be very diverse,
as each participant had different assumptions about what interfaces would be easier to use for him or her.
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MI02

MI04

AB02

Figure 33: User interfaces automatically generated by Supple for the font formatting dialog based on three users’ individual motor abilities.
The interface generated for AB02 was typical for most able-bodied participants: small targets and tabs allow individual lists to be longer, often
eliminating any need for scrolling. MI02 could perform rapid but inaccurate movements; therefore all the interactors in this interface have relatively
large targets (at least 30 pixels in each dimension), at the expense of having to perform more scrolling with list widgets. In contrast, MI04 could
move mouse slowly but accurately and could use the scroll wheel quickly and accurately; this interface therefore reduces the number of movements
necessary by placing all the elements in a single pane, at the expense of using smaller targets and lists that require more scrolling.
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MI09AB03

Figure 34: User interfaces for the synthetic application. The baseline interface is shown in comparison to interfaces generated automatically by
Supple based on two participants’ preferences. Able-bodied participants like AB03 preferred lists to combo boxes, but preferred them to be short;
all able-bodied participants also preferred default target sizes to larger ones. As was typical for many participants with motor-impairments, MI09
preferred lists to combo boxes and frequently preferred the lists to reveal a large number of items; MI09 also preferred buttons to either check boxes
or radio buttons, and liked larger target sizes.

8.5.4. Design and Analysis
The experiment was a mixed between- and within-subjects factorial design with the following factors and levels:

• Impairment {able-bodied (AB), motor-impaired (MI)}

• Interface variant {baseline, ability-based, preference-based}

• Application {font formatting, print dialog, synthetic}

• Trial set {1...5}

• Participant {1...17}

Each participants completed 3 × 3 × 5 = 45 trial sets for a total of 765 trial sets (270 for able-bodied and 495 for
motor-impaired).

The dependent measures were:

• Widget manipulation time captures the time, summed over all operations in a trial set (including errors), spent
by the participants manipulating individual widgets. It was measured from the moment of first interaction with
a widget (first clicks or mouse wheel scroll in case of lists) to the moment the widget was set to the correct
value. For many individual operations involving widgets like buttons, tabs, and lists (if the target element was
visible without scrolling), 0 manipulation time resulted, because the initial click was all that was necessary to
operate the widget.

• Interface navigation time represents the time, summed over all operations in a trial set (including errors),
participants spent moving the mouse pointer from one widget to the next; it was measured from the moment of
the effective start of the pointer movement to the start of the widget manipulation.

• Total time per trial set was calculated as a sum of widget manipulation and interface navigation times.

• Error rate per trial set was calculated as the fraction of operations in a set where at least one error was recorded;
we regarded “errors” as any clicks that were not part of setting the target widget to the correct value.
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Figure 35: Participant completion times. Both motor-impaired and able-bodied participants were fastest with the ability-based interfaces. The
baseline interfaces were slowest to use. Error bars show standard error.

For each application and interface variant combination, we additionally collected 4 subjective measures on a Likert
scale (1–7) relating to the interfaces’ usability and attractiveness. We also asked the participants to rank-order the 3
interface variants for each application by perceived efficiency and overall preference.

For analysis, we took the logarithm of all timing data to adjust for non-normal distributions, which are often found
in such data [4]. We analyzed the timing data using a mixed-effects model analysis of variance with repeated measures:
Impairment, Interface variant, Application and Trial set were modeled as fixed effects while Participant was modeled
correctly as a random effect because the levels of this factor were drawn randomly from a larger population. Although
such analyses retain larger denominator degrees of freedom, detecting statistical significance is no easier, because
wider confidence intervals are used [49, 75]. In these results, we omit reporting the effects of Application and Trial set
because they were not designed to be isomorphic and naturally were expected to result in different performance. As
often is the case, the error rate data was highly skewed towards 0 and did not permit analysis of variance. Accordingly,
we analyzed error rates as count data, using regression with an exponential distribution [84]. Subjective Likert scale
responses were analyzed with ordinal logistic regression [90], and subjective ranking data with the Friedman non-
parametric test.

For all measures, additional pairwise comparisons between interface variants were done using a Wilcoxon Signed
Rank test with Holm’s sequential Bonferroni procedure [37].

8.6. Results
8.6.1. Adjustment of Data

We excluded 2/765 trial sets for two different motor-impaired participants, one due to an error in logging, and one
because the participant got distracted for an extended period of time by an unrelated event.

8.6.2. Completion Times
Both Impairment (F1,15=28.14, p < .0001) and Interface variant (F2,674=228.30, p < .0001) had a significant

effect on the total task completion time. Motor-impaired users needed on average 32.2s to complete a trial set while
able-bodied participants needed only 18.2s. The ability-based interfaces were fastest to use (21.3s), followed by
preference-based (26.0s) and baselines (28.2s). A significant interaction between Impairment and Interface variant
(F2,674=6.44, p < .01) indicates that the two groups saw different gains over the baselines from the two personalized
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Figure 36: Participant error rates. Both motor-impaired and able-bodied participants made fewest errors with the ability-based interfaces. The
baseline interfaces resulted in most errors. Error bars show standard error. Significant pairwise differences are indicated with a star (*).

interface variants. As illustrated in Figure 35 (left), participants with motor-impairments saw significant gains: a 10%
improvement for preference-based and a 28% improvement for ability-based interfaces (F2,438=112.17, p < .0001).
Able-bodied participants saw a relatively smaller, though still significant, benefit of the personalized interfaces: a 4%
improvement for preference-based and 18% for ability-based interfaces (F2,220=49.36, p < .0001).

The differences in performance can be explained by a significant4 main effect of Interface variant on total ma-
nipulation time, that is, the time spent actually manipulating the widgets (χ2

(2,N=763)=359, p < .0001). With baseline
interfaces, participants spent on average 8.29s per trial set manipulating the individual widgets. With preference-
based interfaces, this number was 5.76s, while for ability-based interfaces, it was only 0.84s, constituting a nearly
90% reduction compared to baseline interfaces.

For all results reported so far, the pairwise differences between individual interface variants were statistically
significant as well.

We additionally observed a significant main effect of Interface variant on the total navigation time (F2,674=7.76,
p < .001), explained by the significant difference between baseline and ability-based interfaces (z = −3180, p < .01).
Baseline interfaces required the least amount of navigation time on average (19.9s) while preference- and ability-
based interfaces required a little longer to navigate (20.2s and 20.5s, respectively). While statistically significant,
these differences were very small — on the order of 3% — and were offset by the much larger differences in total
manipulation time. There was a significant interaction between Impairment and Interface variant with respect to
the total navigation time (F2,674=9.20, p < .0001): for able-bodied participants, navigation time was longer for both
of the personalized interfaces (F2,220=17.18, p < .0001; all pairwise differences were significant as well), while for
motor-impaired participants the effect was opposite, though smaller in magnitude and not significant.

8.6.3. Error Rates
There was a significant main effect of Interface variant on error rate (χ2

(5,N=153)=55.46, p < .0001): while the
average error rate for baseline interfaces was 3.96%, it dropped to 2.57% for preference-based interfaces and to
0.93% for ability-based interfaces. This means that participants were both significantly faster and more accurate
with the ability-based interfaces. There was no significant interaction between Impairment and Interface variant and

4The manipulation time data had bi-modal distribution because for many task sets the total manipulation time was 0. We therefore used a
non-parametric Wilcoxon Rank Sum test [88] to analyze these data.
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Figure 37: Subjective results. Both groups of participants found ability-based interfaces easiest to use. Motor-impaired participants also felt that
they were most efficient and least tiring. Able-bodied participants found ability-based interfaces least attractive but, interestingly, motor-impaired
participants saw little difference in attractiveness among the three interface variants. Error bars correspond to standard deviations. Note that on all
graphs higher is better except for Not Tiring-Tiring. Significant pairwise differences are indicated with a star (*).

the effects were similar and significant for both groups individually (χ2
(2,N=54)=23.66, p < .0001 for able-bodied and

χ2
(2,N=99)=11.00, p < .01 for motor-impaired; see Figure 36).

All pairwise differences between individual interface variants for the results reported here are statistically signif-
icant, with the exception of the difference between the baseline and preference-based condition for participants with
motor impairments.

8.6.4. Subjective Results
On a Not Easy (1) – Easy (7) scale for ease of use, motor-impaired participants rated ability-based interfaces

easiest (6.00), preference-based next (5.64), and baseline most difficult (4.18). Similarly for able-bodied participants:
5.29 for ability-based, 5.00 preference-based and 4.38 for baseline. For both groups, these effects were significant
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(χ2
(2,N=99)=40.40, p < .0001 for motor-impaired, and χ2

(2,N=63)=6.95, p < .05 for able-bodied). Additionally, pairwise
comparisons showed that participants with motor impairments found both of the automatically generated user inter-
faces significantly easier to use than the baseline. These subjective results summarized in Figure 37, which also shows
all of the statistically significant pairwise comparisons.

On a Not Efficient (1) – Efficient (7) scale, motor-impaired participants also found ability-based interfaces to be
most efficient (5.58), followed by preference-based (5.18) and baseline interfaces (4.09). This effect was significant
(χ2

(2,N=99)=23.31, p < .0001), but no corresponding significant effect was observed for able-bodied participants. As be-
fore, significant pairwise differences only exist between the baseline condition and each of the automatically-generated
ones for participants with motor impairments.

Similarly, on a Not Tiring (1) – Tiring (7) scale for how physically tiring the interfaces were, motor-impaired
participants found baseline interfaces to be much more tiring (4.09) than either preference-based (3.12) or ability-
based (2.61) variants (χ2

(2,N=99)=25.69, p < .0001), while able-bodied participants did not see the three interface
variants as significantly different on this scale. All three pairwise differences for this measure were significant for
participants with motor impairments.

On a Not Attractive (1) – Attractive (7) scale for visual presentation, able-bodied participants found ability-based
interfaces much less attractive (3.24) than either preference-based (4.90) or baseline variants (5.14). This effect was
significant (χ2

(2,N=63)=25.52, p < .0001), and so were the pairwise differences between the ability-based and each of
the other two conditions. Importantly, motor-impaired participants saw no significant difference in the attractiveness
of the different interface variants.

When asked to rank-order the three interface variants of each application by efficiency of use and overall preference
(Table 5), both groups of participants ranked ability-based interfaces as most efficient, followed by preference-based,
and then baseline interfaces. This result was only significant for participants with motor impairments (χ2

(2,N=33)=21.15,
p < .001).

Ability-

based Baseline

Preference-

based

Ability-

based Baseline

Preference-

based

Efficiency 1.48 2.61 1.91 1.71 2.29 2.00

Overall rank 1.64 2.48 1.88 1.95 2.00 2.05

Motor-impaired Able-bodied

Table 5: Average subjective ranking by efficiency and overall preference (1=best, 3=worst)

With respect to overall preference, participants with motor impairments significantly preferred the two person-
alized types of interfaces than the baselines (χ2

(2,N=33)=12.61, p < .01). Able-bodied participants had no detectable
preference for any of the interface variants.

9. Discussion

Despite more than two decades of research on model-based automatic user interface generation, there remains a
lot of skepticism about the very idea of automatic interface generation. In this section, we explicitly address some of
the common concerns and indicate the novel aspects of our work that make it likely to have practical impact.

Automatically generated user interfaces are not as good as those created by human designers. What is the
value of systems like SUPPLE?

Automatically generated user interfaces are typically perceived as being less aesthetically pleasing than those
created by human designers [56]. Indeed, we do believe that hand-crafted user interfaces, which reflect designers’
creativity and understanding of applications’ semantics, will—for typical users in typical situations—result in more
desirable interfaces than those created by automated tools. Supple, therefore, is not intended to replace or compete with
human designers. Instead, Supple offers alternative user interfaces for those users whose devices, tasks, preferences,
and abilities are not sufficiently addressed by the mainstream hand-crafted designs. Because there exist a myriad of
distinct individuals, each with his or her own devices, tasks, preferences, and abilities, the problem of providing each
person with the most appropriate interface is simply one of scale: there are not enough human experts to provide
each user with an interface reflecting that person’s context. The results of our user study demonstrate that people
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with motor impairments both perform better with and strongly prefer interfaces generated by Supple compared to the
manually designed default interfaces.

Our approach stands in contrast to the majority of prior work on model-based user interface design, where the
automated design tools were used primarily as a means to incrementally improve existing design processes.

The creation of model-based user interfaces requires a large amount of upfront effort. This model creation
is incompatible with the current design practice.

Indeed, nearly all model-based user interface toolkits require that users begin the UI design process by creating
abstract models of the tasks or data (or both). Even if a system provides a graphical environment for designing such
models (as does TERESA [67], for example), this is still inconsistent with the current design practice, which stresses
the importance of exploring the space of concrete (even if low fidelity) designs from the very beginning of the design
process [10, 48, 74, 78]. This high up-front cost has been identified as an important barrier to adoption of automatic
user interface generation technology [56], and it turns user interface design into an abstract programming-like task,
which is not our intention.

Instead, we believe that interfaces for typical users in typical situations should continue to be created by expert
designers using current design methods. The abstract interface model should be automatically inferred as the designer
creates and explores the concrete designs for the typical user. Indeed, this approach has been attempted in a recent
system called Gummy [54]. Gummy observes the designer as he or she creates the default version of a user interface
and it then automatically suggests designs for alternative platforms. We intend to develop such a design too, which—
through only a small amount of additional interaction with the designer—will capture his or her rationale and design
preferences, so that they can be reflected in the automatically generated alternatives.

Alternatively, the specification can be obtained by automatically reverse engineering a concrete user interface.
The feasibility of this approach has been previously demonstrated for traditional (non-AJAX) web sites [9, 64] and
more recently for desktop user interfaces [12, 45]. While some manual intervention will be required to refine such
automatically extracted specifications, this approach may significantly reduce the barrier to automatically generating
alternative user interfaces for existing applications.

Are systems like SUPPLE practical?
The most important limitation to the practical deployment of systems like Supple is the current software engi-

neering practice, which makes the user interface code inseparable from the application logic. HTML-based web
applications are still an exception. It is therefore our intention to deploy our technology first in the web context, most
likely as a JavaScript library that can be included with existing pages and applications to enable a rich set of client-side
adaptations and customizations.

Is SUPPLE’s approach limited to dialog box–like interfaces?
Our approach of casting user interface design as a discrete combinatorial problem is particularly well suited for

dialog box–like user interfaces because there is a well-established vocabulary of interactions used for designing such
interfaces. The approach is not limited to such interfaces, however. We hypothesize that it may also be possible to
identify an analogous discrete set of basic operations for most canvas-based interfaces, such as word processors or
image manipulation programs. We are encouraged by the results of a recent project that identified a vocabulary of 27
operations forming the foundation for most interactions performed on multi-touch surfaces [91].

What about documentation and tech support?
If systems like Supple were to be widely adopted, what would happen to our ability to share expertise via docu-

mentation or other technical support mechanisms? For documentation, the answer is easy: it is trivial to automatically
generate instructions showing the sequence of UI operations and to illustrate these instructions with automatically cre-
ated screen shots. For remote technical support, where screen sharing is currently used, a “model sharing” approach
could be used instead: the user’s and the technician’s versions of the software could be linked not at the level of the
pixels, but at the level of the underlying model: the technician and the user can see different surface presentation of
the application, but both would be operating identical functionality. If the technician, for example, set a combo box
to a particular value, the same operation could be visualized on a user’s screen regardless of how this functionality is
rendered.

44



10. Conclusion

We have presented Supple, a system that automatically generates graphical user interfaces given a functional user
interface specification, a model of the capabilities and limitations of the device, a cost function, and an optional usage
model reflecting how the interface will be used. Supple naturally generates user interfaces adapted to different devices
as well as varied motor abilities. It also provides mechanisms for automatic system-driven adaptation to both long-
term and short-term usage patterns. As a complement to automatic generation and adaptation, Supple also supports
an extensive user-driven customization mechanism that lets users modify the overall structure and individual pieces of
any Supple-generated user interface. We illustrated our approach with a concrete application of Supple: automatically
generating user interfaces adapted to the individual abilities of users with motor impairments.

Supple’s optimization algorithm can generate user interfaces in less than a second in most cases, provided the
cost function is expressed in a particular parametrized form. We have also introduced an alternative cost function
formulation that can reflect user’s motor capabilities, but which results in slower system performance (on the order of
tens of minutes). An important consequence of casting user interface generation as an optimization problem is that
the style of the user interfaces generated by Supple can be entirely determined by the appropriate parameterization
of the cost functions. This offers the potential for personalizing the interface generation process. Consequently, we
have subsequently developed two additional systems: Arnauld for eliciting users’ subjective preferences [22] and
AbilityModeler for modeling objective motor abilities [27].

The results of the summative user study, which involved 11 participants with motor impairments and 6 able-bodied
participants, showed that the participants were significantly faster and made far fewer errors using the automatically
generated personalized interfaces than with the default user interfaces. Additionally, participants with motor im-
pairments strongly preferred automatically generated user interfaces to the default ones. By helping improve their
efficiency, Supple helped narrow the gap between motor-impaired and able-bodied users by 62%, with individual
gains ranging from 32% to 103%. These results demonstrate that the technical contributions presented in this paper
have a potential to make a significant impact in practice.

In our work, we considered two metrics for optimizing user interfaces, namely, a model of users’ preferences,
and a model of their motor abilities. Future work should explore other individual metrics, such as those related to
cognition and attention. But another interesting direction would be to consider metrics that reflect how different
interface designs encourage or facilitate particular user behaviors. For example, an on-line merchant may wish for an
interface that maximizes the number of product pages that a visitor explores, while a collaborative knowledge sharing
site will benefit from maximizing the number and quality of knowledge contributions. Kohavi et al., [43] offer some
helpful initial insights.

Another promising direction will be to pursue the semantic adaptation of user interfaces. In contrast to our work so
far, where we adapted the structure and presentation of the interfaces, future work could explore ways to automatically
adapt the functionality itself; that is, ways to automatically simplify user interfaces. This is an important problem
because solving it would enable complex applications to be transformed for easier use on mobile devices and by users
with cognitive impairments. It also would allow automatic generation of interfaces for novice users, and allow frequent
users to quickly create task-specific simplified views of a complex interface. Such simplified interface views have been
shown to significantly improve users’ satisfaction, but are time-consuming to create and maintain by hand [52]. This
is a hard problem to solve automatically, because it requires an understanding of the function and purpose of interface
elements. The existing solutions rely on extensive semantic annotations by the designer or by the user [16]. An
alternative approach would be to leverage large user communities by automatically mining usage and customization
traces.

Supple is not intended to replace human designers. Instead, it can provide alternative user interfaces for those
users whose individual circumstances are not sufficiently addressed by the hand-crafted designs. Because there exist
a myriad of distinct individuals, each with his or her own devices, tasks, preferences, and abilities, the problem of
providing each person with the most appropriate interface is simply one of scale: there are not enough human experts
to provide each user with an interface reflecting that person’s context. Our work demonstrates that automated tools are
a feasible way of addressing this scalability challenge: the Supple system can generate user interfaces in a matter of
seconds, and all the personalization mechanisms we subsequently developed rely entirely on user input, not requiring
any expert assistance.
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